Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips

15.11.2019

Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have developed an optical switch that routes light from one computer chip to another in just 20 billionths of a second -- faster than any other similar device. The compact switch is the first to operate at voltages low enough to be integrated onto low-cost silicon chips and redirects light with very low signal loss.

The switch's record-breaking performance is a major new step toward building a computer that uses light instead of electricity to process information. Relying on particles of light -- photons -- to transport data within a computer offers several advantages over electronic communications.


Artist's depiction of newly demonstrated nano-opto-electro-mechanical switches as they could be used for future filtering of colors for sensing or communications. In communications, the amount of transmitted information per channel can be increased by carrying data not only by one color but by multiple colors. Yet, the different color channels need to be routed on demand to different end-users. The image shows how this can be achieved on the scale of 1 millionth of a meter (1 micrometer) by using the switches. White light can contain, for example, blue light for voice messages, red for video, and green for text. All of those are filtered by the switches such that red, blue and green color channels are routed to different designated end-users. By applying tiny voltages researchers can swap colors on demand, controlling which data reaches which end-user.

Credit: S. Kelley/NIST

Photons travel faster than electrons and don't waste energy by heating up the computer components. Managing that waste heat is a major barrier to improving computer performance. Light signals have been used for decades to transmit information over great distances using optical fibers, but the fibers take up too much room to be used to carry data across a computer chip.

The new switch combines nanometer-scale gold and silicon optical, electrical and mechanical components, all densely packed, to channel light into and out of a miniature racetrack, alter its speed, and change its direction of travel. (One nanometer is a billionth of a meter, or about one-hundred-thousandth the width of a human hair.) The NIST-led international team describes the device online today in Science.

The device has myriad applications, notes study co-author Christian Haffner of NIST, ETH Zurich and the University of Maryland. In driverless cars, the switch could rapidly redirect a single light beam that must continually scan all parts of the roadway to measure the distance to other automobiles and pedestrians.

The device could also make it easier to use more powerful light-based circuits instead of electricity-based ones in neural networks. These are artificial intelligence systems that simulate how neurons in the human brain make decisions about such complex tasks as pattern recognition and risk management.

The new technology also uses very little energy to redirect light signals. This feature may help realize the dream of quantum computing. A quantum computer processes data stored in the subtle interrelations between specially prepared pairs of subatomic particles.

However, these relationships are extremely fragile, requiring that a computer operate at ultralow temperatures and low power so that the particle pairs are disturbed as little as possible. Because the new optical switch requires little energy -- unlike previous optical switches -- it could become an integral part of a quantum computer.

Haffner and his colleagues, who include Vladimir Aksyuk and Henri Lezec of NIST, say their findings may come as a surprise to many in the scientific community because the results contradict long-held beliefs.

Some researchers have thought that opto-electro-mechanical switches would not be practical because they would be bulky, operate too slowly and require voltages too high for the components of a computer chip to tolerate.

The switch exploits the wave nature of light. When two identical light waves meet, they can superpose such that the crest of one wave aligns or reinforces the crest of the other, creating a bright pattern known as constructive interference.

The two waves may also be exactly out of step, so that the valley of one wave cancels the crest of the other, resulting in a dark pattern -- destructive interference.

In the team's setup, a light beam is confined to travel inside a miniature highway -- a tube-shaped channel known as a waveguide. This linear highway is designed so that it has an off-ramp -- some of the light can exit into a racetrack-shaped cavity, just a few nanometers away, etched into a silicon disk. If the light has just the right wavelength, it can whip around the racetrack many times before leaving the silicon cavity.

The switch has one other crucial component: a thin gold membrane suspended just a few tens of nanometers above the silicon disk. Some of the light traveling in the silicon racetrack leaks out and strikes the membrane, inducing groups of electrons on the membrane's surface to oscillate.

These oscillations, known as plasmons, are a kind of hybrid between a light wave and an electron wave: The oscillating electrons resemble the incoming light wave in that they vibrate at the same frequency, but they have a much shorter wavelength. The shorter wavelength lets researchers manipulate the plasmons over nanoscale distances, much shorter than the length of the original light wave, before converting the oscillations back into light. This, in turn, allows the optical switch to remain extremely compact.

By changing the width of the gap between the silicon disk and the gold membrane by only a few nanometers, the researchers could delay or advance the phase of the hybrid light wave -- the point in time when the wave reaches a crest or valley. Even minuscule variations in the width of the gap, which the team accomplished by electrostatically bending the gold membrane, dramatically altered the phase.

Depending on how much the team had advanced or delayed the phase of the wave, when it recombined with light still traveling in the tube-shaped highway, the two beams interfered either constructively or destructively (see animation). If the light beams match up to interfere constructively, the light will continue in its original direction, traveling down the tube.

But if the light beams interfere destructively, canceling each other out, that pathway is blocked. Instead, the light must move in another direction, determined by the orientation of other waveguides, or routes, placed close to the blocked pathway. In this way, the light can be switched at will to any of hundreds of other computer chips.

Scientists had once thought that a plasmonic system would greatly attenuate light signals because photons would penetrate the interior of the gold membrane, where electrons would absorb much of the light energy.

But the researchers have now proved that assumption wrong. The compactness of the device and a design that ensured that few photons would penetrate the membrane resulted in a loss of just 2.5% of the light signal, compared with 60% with previous switches. That puts the switch, although still a prototype, within reach of commercial applications.

The team is now working to make the device even smaller by shortening the distance between the silicon disk and the gold membrane. This would further reduce signal loss, making the technology even more appealing to industry.

###

Paper: C. Haffner, A. Joerg, M. Doderer, F. Mayor, D. Chelladurai, Y. Fedoryshyn, C.I. Roman, M. Mazur, M. Burla, H.J. Lezec, V.A. Aksyuk, J. Leuthold. Nano-opto-electro-mechanical switches operated at CMOS-level voltages. Science. Published online Nov. 14, 2019. DOI: 10.1126/science.aay8645

Media Contact

Ben P. Stein
benjamin.stein@nist.gov
301-975-2763

 @NIST

http://www.nist.gov 

Ben P. Stein | EurekAlert!
Further information:
http://dx.doi.org/10.1126/science.aay8645

More articles from Information Technology:

nachricht Fraunhofer IPT and Ericsson launch 5G-Industry Campus Europe, Europe’s largest Industrial 5G Research Network
13.12.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings
11.12.2019 | Alpen-Adria-Universität Klagenfurt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>