Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New water simulation captures small details even in large scenes

13.08.2018

Method bridges gap between efficient computing and realistic water wave simulations
Novel artistic tools simplify and extend capabilities for game and movie effects

When designers select a method for simulating water and waves, they have to choose either fast computation or realistic effects; state-of-the-art methods are only able to optimize one or the other. Now, a method developed by researchers at the Institute of Science and Technology Austria (IST Austria) and NVIDIA bridges this gap.


A frame from a real-time animation. The simulation covers a huge area with hundreds of floating objects, but can still include tiny details visible only at close range.

Stefan Jeschke

Their simulation method can reproduce complex interactions with the environment and tiny details over huge areas—all in real time. Moreover, the basic construction of the method allows graphics designers to easily create artistic effects. The authors will present their work at the annual top conference for computer graphics: SIGGRAPH 2018, where IST Austria researchers are presenting a total of five different projects.

Current water wave simulations are based on one of two available methods. “Fourier-based” methods are efficient but cannot model complicated interactions, such as water hitting shore of an island.

“Numerical” methods, on the other hand, can simulate a wide range of such effects, but are much more expensive computationally. As a result, “scenes with details at the level of tiny waves and with environmental interactions at the level of kilometer-long islands were either impossible or completely impractical,” says Chris Wojtan, professor at IST Austria.

“Our method makes that breadth of scale and range possible, in real time.” The team behind the new method comprises Tomáš Skřivan of IST Austria, as well as Stefan Jeschke, Matthias Müller-Fischer, Nuttapong Chentanez, and Miles Macklin of NVIDIA, in addition to Wojtan.

Achieving all of this required ingenuity, as well as a deep understanding of the basic physics involved. “We encoded the waves with different physical parameters than people previously used,” explains Wojtan. “Essentially, this gave us values that changed much more slowly, which is what allowed us to simulate small details at very large resolution.”

These details make possible a variety of effects that were previously unattainable or extremely expensive computationally, such as objects landing realistically in water (or even thousands of objects landing simultaneously!), or water reflecting off the sides of a moving boat.

Jeschke, first author and former IST Austria postdoc, emphasizes the possible applications in creating detailed and artistic simulations, for instance for games, films, or virtual reality programs. “The combination of range, detail, and computational speed represents a big step forward for the industry,” he says. “Plus, because of how we encode our simulation, it is easy to manipulate it and model water flow in varying environments like rivers or oceans. Our method allows artists to easily ‘overwrite’ nature, and create scenes faster than ever before.”

The team has already designed one such tool: the “wave-painter” works like the paintbrush in a drawing program, increasing the height of the waves as the artist “draws” on a particular area. The wave-painter can also be adapted to create waves flowing in a particular direction as seen in rivers, for example.

Watch the simulation in action here:
http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat...
and here:
http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat...

Project page (including paper): http://visualcomputing.ist.ac.at/publications/2018/WSW/

About IST Austria

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Stefan Jeschke
jeschke@stefan-jeschke.com

Originalpublikation:

Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan. 2018. Water Surface Wavelets. ACM Trans. Graph. 37, 4, Article 1 (August 2018), 13 pages. https://doi.org/10.1145/3197517.3201336
http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat...

Weitere Informationen:

http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat... Example of simulations
http://pub.ist.ac.at/group_wojtan/projects/2018_Jeschke_WaterSurfaceWavelets/Wat... More examples
http://visualcomputing.ist.ac.at/publications/2018/WSW/ Project page

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Brown researchers teach computers to see optical illusions
24.09.2018 | Brown University

nachricht One Step Ahead: Adaptive Radar Systems for Smart Driver Assistance
20.09.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>