Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019

Johns Hopkins engineers have created a new lens-free ultra-miniaturized endoscope, the size of a few human hairs in width, that is less bulky and can produce higher quality images.

Their findings were published today in Science Advances.

"Usually, you have sacrifice either size or image quality. We've been able to achieve both with our microendoscope," says Mark Foster, an associate professor of electrical and computer engineering at The Johns Hopkins University and the study's corresponding author.


A to C shows beads on a slide imaged by a bulk microscope. D to F are the beads when viewed from a conventional lens-based microendoscope. G to I are the raw images from the research team's new ultra-miniaturized lens-free microendoscope. The researchers say these images are terrible but actually provide a great deal of information about light coming through that can be used in computational reconstruction to piece together a clearer final image. J to L are images G to I after computational reconstruction.

Credit: Mark Foster

Intended for examining neurons firing off in the brains of animals such as mice and rats, an ideal microendoscope should be small to minimize brain tissue damage yet powerful enough to produce a clear image.

Currently, standard microendoscopes are about half a millimeter to a few millimeters in diameter, and require larger, more invasive lenses for better imaging. While lensless microendoscopes exist, the optical fiber within that scans an area pixel by pixel frequently bends and loses imaging ability when moved.

In their new study, Foster and colleagues created a lens-free ultra-miniaturized microendoscope that, compared to a conventional lens-based microendoscope, increases the amount researchers can see and improves image quality.

The researchers achieved this by using a coded aperture, or a flat grid that randomly blocks light creating a projection in a known pattern akin to randomly poking a piece of aluminum foil and letting light through all of the small holes.

This creates a messy image, but one that provides a bounty of information about where the light originates, and that information can be computationally reconstructed into a clearer image. In their experiments, Foster's team looked at beads in different patterns on a slide.

"For thousands of years, the goal has been to make an image as clear as possible. Now, thanks to computational reconstruction, we can purposefully capture something that looks awful and counterintuitively end up with a clearer final image," says Foster.

Additionally, Foster and team's microendoscope doesn't require movement to focus on objects at different depths; they use computational refocusing to determine where the light originated from in 3 dimensions. This allows the endoscope to be much smaller than a traditional one that requires moving the endoscope around to focus.

Looking forward, the research team will test their microendoscope with fluorescent labeling procedures in which active brain neurons would be tagged and illuminated, to determine how accurately the endoscope can image neural activity.

###

Other authors on the study include Jaewook Shin, Dung N. Tran, Jasper R. Stroud, Sang Chin and Trac D. Tran, all of The Johns Hopkins University.

Media Contact

Chanapa Tantibanchachai
chanapa@jhu.edu
928-458-9656

 @JohnsHopkins

http://www.jhu.edu 

Chanapa Tantibanchachai | EurekAlert!

More articles from Information Technology:

nachricht Novel approach improves graphene-based supercapacitors
03.08.2020 | University of Technology Sydney

nachricht Germany-wide rainfall measurements by utilizing the mobile network
03.08.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>