Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique to suppress sound waves from disorder to improve optical fiber communication

08.08.2017

Energy loss due to scattering from material defects is known to set limits on the performance of nearly all technologies that we employ for communications, timing, and navigation. In micro-mechanical gyroscopes and accelerometers, such as those commonly found in cellphones today, microstructural disorder impacts measurement drift and overall accuracy of the sensor, analogous to how a dirty violin string might impact one's enjoyment of beautiful music. In optical fiber communication systems, scattering from material defects can reduce data fidelity over long distances thereby reducing achievable bandwidth. Since defect-free materials cannot be obtained, how can we possibly improve on the fundamental technological limits imposed by disorder?

A research collaboration between the University of Illinois at Urbana-Champaign, the National Institute of Standards and Technology, and the University of Maryland has revealed a new technique by which scattering of sound waves from disorder in a material can be suppressed on demand.


This is a microscope image of a silica glass resonator and optical fiber waveguide. Light and sound circulating in this type of resonator are shown to exhibit chiral effects in this study.

Credit: Gaurav Bahl, University of Illinois Department of Mechanical Science and Engineering

All of this, can be simply achieved by illuminating with the appropriate color of laser light. The result, which is published in Nature Communications, could have a wide-ranging impact on sensors and communication systems.

Gaurav Bahl, an assistant professor of mechanical science and engineering, and his research team have been studying the interaction of light with sound in solid state micro-resonators. This new result is the culmination of a series of experiments pursued by his team over the past several years, and a new scientific question posed in the right place.

"Resonators can be thought of as echo chambers for sound and light, and can be as simple as micro-spherical balls of glass like those we used in our study," Bahl explained. "Our research community has long understood that light can be used to create and amplify sound waves in resonators through a variety of optical forces.

The resonant echoes help to increase the interaction time between sound, light, and material disorder, making these subtle effects much easier to observe and control. Since interactions within resonators are fundamentally no different from those taking place in any other system, these can be a really compact platform for exploring the underlying physics."

The key to suppressing scattering from disorder is to induce a mismatch in the propagation between the original and scattered directions. This idea is similar to how an electric current prefers to flow along the path of least resistance, or how water prefers to flow through a wider pipe rather than a constricted one.

To suppress back-scattering of forward-moving sound waves, one must create a large acoustic impedance in the backward direction. This asymmetry for forward and backward propagating waves is termed as chirality of the medium. Most solid-state systems do not have chiral properties, but these properties can be induced through magnetic fields or through space-time variation of the medium.

"A few years ago, we discovered that chirality can be induced for light using an opto-mechanical phenomenon, in which light couples with propagating sound waves and renders the medium transparent. Our experiments at that time showed that the induced optical transparency only allows light to move unidirectionally, that is, it creates a preferentially low optical impedance in one direction," Bahl said. "It is then that we met our collaborator Jacob Taylor, a physicist at NIST, who asked us a simple question. What happens to the sound waves in such a system?"

"Our theoretical modeling predicted that having a chiral system for sound propagation could suppress any back-scattering that may have been induced by disorder," explained Taylor. "This concept arose from work we've been doing in the past few years investigating topological protection for light, where chiral propagation is a key feature for improving the performance of devices. Initially the plan with Bahl's team was just to show a difference between the forward and backward propagating sound waves, using a cooling effect created by light. But the system surprised us with an even stronger practical effect than expected."

That simple question launched a new multi-year research effort in a direction that has not been explored previously. Working in close collaboration, the team discovered that Brillouin light scattering, a specific kind of opto-mechanical interaction, could also induce chirality for sound waves. Between the experimental tools in Bahl's lab, and the theoretical advancements in Taylor's lab, the pieces of the puzzle were already in place.

"We experimentally prepared a chiral optomechanical system by circulating a laser field in the clockwise direction in a silica glass resonator. The laser wavelength, or color, was specially arranged to induce optical damping of only clockwise sound waves. This created a large acoustic impedance mismatch between clockwise and counter-clockwise directions of propagation," explained Seunghwi Kim, first author of the study.

"Sound waves that were propagating the clockwise direction experienced very high losses due to the opto-mechanical cooling effect. Sound waves moving in the counter-clockwise direction could move freely. Surprisingly, we saw a huge reduction of scattering loss for counter-clockwise sound waves, since those waves could no longer scatter into the clockwise direction! In other words, even though disorder was present in the resonator, its action was suppressed."

Just as sound is the primary method of voice communication between humans, electromagnetic waves like radio and light are the primary technology used for global communications. What could this discovery mean for the communications industry? Disorder and material defects are unavoidable optical fiber systems, resulting in lower data fidelity, bit errors, and bandwidth limitations. The team believes that technologies based on this discovery could be leveraged to circumvent the impact of unavoidable material defects in such systems.

"We've seen already that many sensors, such as those found in your phone or in your car, can be limited by intrinsic defects in the materials," added Taylor. "The approach introduced here provides a simple means of circumventing those challenges, and may even help us approach the limits set by quantum mechanics, rather than our own engineering challenges."

Practical applications of this result may not be too many years off. Reduction of mechanical losses could also directly improve mechanics-based inertial navigation sensors that we use today. Examples that we encounter in daily life are accelerometers and gyroscopes, without which our mobile phones would be a lot less capable, and our cars and airplanes a lot less safe.

###

In addition to Bahl, Taylor, and Kim, Xunnong Xu was a coauthor of the study. Their paper titled "Dynamically induced robust phonon transport and chiral cooling in an optomechanical system" is freely available online. Funding for this research was provided by the US National Science Foundation (NSF), the Air Force Office for Scientific Research (AFOSR), the Office of Naval Research (ONR), and DARPA Microsystems Technology Office.

Gaurav Bahl | EurekAlert!

More articles from Information Technology:

nachricht Artificial Intelligence speeds up photodynamics simulations
12.09.2019 | University of Vienna

nachricht Automated assembly system manufactures solid-state LIDAR systems for autonomous vehicles
12.09.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>