Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique controls autonomous vehicles on a dirt track

24.05.2016

Strategy helps self-driving, robotic vehicles maintain control at edge of handling limits

A Georgia Institute of Technology research team has devised a novel way to help keep a driverless vehicle under control as it maneuvers at the edge of its handling limits. The approach could help make self-driving cars of the future safer under hazardous road conditions.


Georgia Tech researchers are studying a one-fifth-scale autonomous vehicle as it traverses a dirt track. The work will help the engineers understand how to help driverless vehicles face the risky and unusual road conditions of the real world.

Credit: Rob Felt/Georgia Tech

Researchers from Georgia Tech's Daniel Guggenheim School of Aerospace Engineering (AE) and the School of Interactive Computing (IC) have assessed the new technology by racing, sliding, and jumping one-fifth-scale, fully autonomous auto-rally cars at the equivalent of 90 mph. The technique uses advanced algorithms and onboard computing, in concert with installed sensing devices, to increase vehicular stability while maintaining performance.

The work, tested at the Georgia Tech Autonomous Racing Facility, is sponsored by the U.S. Army Research Office. A paper covering this research was presented at the recent International Conference on Robotics and Automation (ICRA), held May 16-21.

"An autonomous vehicle should be able to handle any condition, not just drive on the highway under normal conditions," said Panagiotis Tsiotras, an AE professor who is an expert on the mathematics behind rally-car racing control. "One of our principal goals is to infuse some of the expert techniques of human drivers into the brains of these autonomous vehicles."

Traditional robotic-vehicle techniques use the same control approach whether a vehicle is driving normally or at the edge of roadway adhesion, Tsiotras explained. The Georgia Tech method - known as model predictive path integral control (MPPI) - was developed specifically to address the non-linear dynamics involved in controlling a vehicle near its friction limits.

Utilizing Advanced Concepts

"Aggressive driving in a robotic vehicle -- maneuvering at the edge -- is a unique control problem involving a highly complex system," said Evangelos Theodorou, an AE assistant professor who is leading the project. "However, by merging statistical physics with control theory, and utilizing leading-edge computation, we can create a new perspective, a new framework, for control of autonomous systems."

The Georgia Tech researchers used a stochastic trajectory-optimization capability, based on a path-integral approach, to create their MPPI control algorithm, Theodorou explained. Using statistical methods, the team integrated large amounts of handling-related information, together with data on the dynamics of the vehicular system, to compute the most stable trajectories from myriad possibilities.

Processed by the high-power graphics processing unit (GPU) that the vehicle carries, the MPPI control algorithm continuously samples data coming from global positioning system (GPS) hardware, inertial motion sensors, and other sensors. The onboard hardware-software system performs real-time analysis of a vast number of possible trajectories and relays optimal handling decisions to the vehicle moment by moment.

In essence, the MPPI approach combines both the planning and execution of optimized handling decisions into a single highly efficient phase. It's regarded as the first technology to carry out this computationally demanding task; in the past, optimal- control data inputs could not be processed in real time.

Fully Autonomous Vehicles

The researchers' two auto-rally vehicles -- custom built by the team -- utilize special electric motors to achieve the right balance between weight and power. The cars carry a motherboard with a quad-core processor, a potent GPU, and a battery.

Each vehicle also has two forward-facing cameras, an inertial measurement unit, and a GPS receiver, along with sophisticated wheel-speed sensors. The power, navigation, and computation equipment is housed in a rugged aluminum enclosure able to withstand violent rollovers. Each vehicle weighs about 48 pounds and is about three feet long.

These rolling robots are able to test the team's control algorithms without any need for off-vehicle devices or computation, except for a nearby GPS receiver. The onboard GPU lets the MPPI algorithm sample more than 2,500, 2.5-second-long trajectories in under 1/60 of a second.

An important aspect in the team's autonomous-control approach centers on the concept of "costs" - key elements of system functionality. Several cost components must be carefully matched to achieve optimal performance.

In the case of the Georgia Tech vehicles, the costs consist of three main areas: the cost for staying on the track, the cost for achieving a desired velocity, and the cost of the control system. A sideslip-angle cost was also added to improve vehicle stability.

The cost approach is important to enabling a robotic vehicle to maximize speed while staying under control, explained James Rehg, a professor in the Georgia Tech School of Interactive Computing who is collaborating with Theodorou and Tsiotras.

It's a complex balancing act, Rehg said. For example, when the researchers reduced one cost term to try to prevent vehicle sliding, they found they got increased drifting behavior.

"What we're talking about here is using the MPPI algorithm to achieve relative entropy minimization -- and adjusting costs in the most effective way is a big part of that," he said. "To achieve the optimal combination of control and performance in an autonomous vehicle is definitely a non-trivial problem."

Media Contact

Jason Maderer
maderer@gatech.edu
404-660-2926

 @GeorgiaTech

http://www.gatech.edu 

Jason Maderer | EurekAlert!

More articles from Information Technology:

nachricht Drones shown to make traffic crash site assessments safer, faster and more accurate
17.01.2019 | Purdue University

nachricht Next generation photonic memory devices are light-written, ultrafast and energy efficient
15.01.2019 | Eindhoven University of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Hand-knitted Molecules

18.01.2019 | Life Sciences

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>