Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sensor Technologies and Mobile Robotics for Emotion-sensitive Assistance Systems

14.12.2015

In the context of the project „EmAsIn”, Fraunhofer IPA collaborates with industrial and scientific partners to develop new assistance systems for people suffering from affective disorders or dementia. The assistance systems should not only support the user informatively, but also recognize his habitual human communication patterns, react accordingly and enable interaction. Therefore, those systems shall be evolved from a technical tool into a competent companion.

“EmAsIn” stands for “Emotion-sensitive Assistance Systems for Reactive Psychological Interaction with People”. Within the scope of the project, the team will study how people with illnesses can overcome special psychological or cognitive challenges in their everyday lives with the aid of targeted human-machine interaction and which aids can improve their quality of life.


The project partners expand and enhance technologies of the Care-O-bot® 3 for the human-machine-interaction.

Source: Kniff Projektagentur GbR

For optimal results, the partners are actively collaborating with people suffering from dementia or affective disorders and jointly investigating technological approaches and assistance functions.

User specific Human-Machine Interaction

Along with illness-related situations, the new system should be able to recognize social behavior patterns and nonverbal clues in human communication. In particular, the project team will study personalized information transfer concepts and new user interface concepts that specifically provide support functions and encouraging stimuli in situations recognized by the system as critical.

The project also aims to extend existing assistance systems in this direction and upgrade them with new functions that detect and interpret implicit human communication signals, such as emotions or gestures, and that are able to derive and perform suitable support actions.

Recognize emotions reliably and react appropriately

For many years, Fraunhofer IPA has been working on the development of technical assistance systems that provide informational and actuatory support to elderly users. An example project is “safe@home”, in which the scientists realized a touchless and discrete assistance system for private environments using stationary 3D sensors.

The system detects falls as well as immobility and derives suitable actions, such as informing neighbors or an emergency call center. Mobile robots like the Care-O-bot® or the emergency assistance „MoBiNa“ are able to connect with those stationary sensors and can drive autonomously to the person in need of help after a fall. At the same time, they serve as communication platforms for the direct conversation with the emergency center.

In the current project, scientists of Fraunhofer IPA are further developing those technologies, specifically the stationary sensors for the detection of emotions as well as the mobile robotic system as an interaction and information interface. The challenge is to realize reliable emotion recognition. Whereas falls can be detected by motion sequences, emotions are expressed by gestures or the behavior of a person. The assistant systems must interpret those and adjust their reaction accordingly.

Project information:
Project title: EmAsIn (Emotion-sensitive Assistance Systems for Reactive Psychological Interaction with People)
Duration: 01-09-2015 to 31-08-2018
Support: The project is supported by the German Federal Ministry of Education and Research (BMBF) in connection with the federal government’s High-Tech 2020 strategy. It forms part of the InterEmotio program, which promotes the evolution of technical tools into interactive assistants by means of systems sensitive to social and emotional contexts for optimized human-machine interaction.
Partner: ITK Engineering AG (project management, sensor systems and telemedicine), Cognitec Systems GmbH and Sikom Software GmbH (image and audio data processing), Fraunhofer IPA and FZI Research Centre Computer Science (gesture and condition recognition, mobile applications), Institute for Clinical Psychology of the Hospital Stuttgart and BruderhausDiakonie (application context, medical and nursing expertise, advices on ethical and social issues, evaluation of the results).

Expert Contact:
Julia Denecke; Phone: 0711-970 1829; E-Mail: julia.denecke@ipa.fraunhofer.de

Press and Public Relations
Jörg-Dieter Walz | Phone +49 711 970-1667 | presse@ipa.fraunhofer.de | Fraunhofer Institute for Manufacturing Engineering and Automation IPA | Nobelstrasse 12 | 70569 Stuttgart

Weitere Informationen:

http://www.ipa.fraunhofer.de
http://www.ipa.fraunhofer.de/emotionssensitive_assistenzsysteme.html

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>