Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New report on energy-efficient computing

21.10.2015

Report, the result of jointly funded workshop by SRC and NSF, aligns with White House technology initiatives

A report that resulted from a workshop jointly funded by the Semiconductor Research Corporation (SRC) and National Science Foundation (NSF) outlines key factors limiting progress in computing--particularly related to energy consumption--and novel research that could overcome these barriers.


Inspired by the neural architecture of a macaque brain, this ghostly neon swirl is the wiring diagram for a new kind of computer that, by some definitions, may soon be able to think. In recent years, IBM's cognitive computing group in San Jose, California, has made great strides toward designing a computer that can detect patterns, plan responses, and learn from its mistakes, said Emmett McQuinn, a hardware engineer at IBM who designed the image. To create the image, which was a First Place Winner in the 2012 International Science & Engineering Visualization Challenge, McQuinn first clustered and colored the nodes based on the 77 different functional regions that neuroscientists have identified in the macaque brain. Then, he found a circular arrangement that pleased him.

Credit: Emmett McQuinn, IBM Research - Almaden

The findings and recommendations in the report are in alignment with the nanotechnology-inspired Grand Challenge for Future Computing announced today by the White House Office of Science and Technology Policy. The Grand Challenge calls for new approaches to produce computing systems capable of operating with the efficiency of the human brain. It also aligns with the National Strategic Computing Initiative announced by an Executive Order signed by the President July 29.

Energy efficiency is vital to improving performance at all levels. These levels range from devices and transistors to large information technology systems, and from small sensors at the edge of the Internet of Things to large data centers in cloud and supercomputing systems.

"Fundamental research on hardware performance, complex system architectures, and new memory/storage technologies can help to discover new ways to achieve energy-efficient computing," said Jim Kurose, assistant director of NSF's Directorate for Computer and Information Science and Engineering (CISE). "Partnerships with industry, including SRC and its member companies, are an important way to speed the adoption of these research findings."

Performance improvements today are limited by energy inefficiencies that result in computing systems overheating and experiencing thermal management issues. The electronic circuits in computer chips still operate far from any fundamental limits to energy efficiency, and much of the energy used by today's computers is expended moving data between memory and their central processors.

But while the pace of performance increases has slowed, the amount of data computer users produce is exploding. By 2020, an estimated 44 zettabytes of data (1 zettabyte equals 1 trillion gigabytes) will be created on an annual basis, according to a 2014 IDC study.

"New devices, and new architectures based on those devices, could take computing far beyond the limits of today's technology. The benefits to society would be enormous," said Tom Theis, Nanoelectronics Research Initiative (NRI) executive director at SRC, the world's leading university-research consortium for semiconductor technologies.

In order to realize these benefits, a new paradigm for computing is necessary. A SRC- and NSF-funded workshop held April 14-15 in Arlington, Virginia, convened experts from industry, academia and government to identify key factors limiting progress and promising new concepts that should be explored. The report announced today resulted from the workshop discussions and provides a guide to future basic research investments in energy-efficient computing.

The report builds upon an earlier one on Rebooting the IT Revolution, funded by the Semiconductor Industry Association, SRC and NSF.

Meeting the Nanotechnology Grand Challenge and the goals of the National Strategic Computing Initiative requires multi-disciplinary fundamental research on materials, devices and architecture. NSF and SRC, both individually and together, have a long history of supporting long-term research in these areas to address such fundamental, high-impact science and engineering challenges.

Media Contact

Aaron Dubrow
adubrow@nsf.gov
703-292-4489

 @NSF

http://www.nsf.gov 

Aaron Dubrow | EurekAlert!

Further reports about: Computing Grand Challenge SRC computing systems levels semiconductor technologies

More articles from Information Technology:

nachricht CiViQ brings quantum technologies to the telecommunications arena
21.11.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Earthquake researchers finalists for supercomputing prize
19.11.2018 | University of Tokyo

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>