Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New interactive machine learning tool makes car designs more aerodynamic

14.08.2018

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model the flow of air around the object by having a computer solve a complex set of equations—a procedure that usually takes hours or even an entire day.


The new software instantly shows stream lines as well as pressure on the surface (color-coded) of interactively deformable shapes.

Nobuyuki Umetani

Nobuyuki Umetani from Autodesk research (now at the University of Tokyo) and Bernd Bickel from the Institute of Science and Technology Austria (IST Austria) have now significantly sped up this process, making streamlines and parameters available in real-time.

Their method, which is the first to use machine learning to model flow around continuously editable 3D objects, will be presented at this year’s prestigious SIGGRAPH conference in Vancouver, where IST Austria researchers are involved in a total of five presentations.

Machine learning can make extremely time-consuming methods a lot faster. Before, the computation of the aerodynamic properties of cars usually took a day. “With our machine learning tool we are able to predict the flow in fractions of a second,” says Nobuyuki Umetani. The idea to use machine learning came up in a discussion between the two long-time collaborators.

“We both share the vision of making simulations faster,” explains IST Austria Professor Bernd Bickel. “We want people to be able to design objects interactively, and therefore we work together to develop data-driven methods,” he adds.

So far, it has been extremely challenging to apply machine learning to the problem of modeling flow fields around objects because of the restrictive requirements of the method. For machine learning, both the input and the output data need to be structured consistently. This structuring of information works well for 2D images, where a picture can be easily represented by a regular arrangement of pixels.

But if a 3D object is represented by units that define its shape, such as a mesh of triangles, the arrangement of these units might change if the shape changes. Two objects that look very similar to a person might therefore appear very different to a computer, as they are represented by a different mesh, and the machine would therefore be unable to transfer the information about the one to the other.

The solution came from Nobuyuki Umetani’s idea to use so-called polycubes to make the shapes manageable for machine learning. This approach, which was originally developed to apply textures to objects in computer animations, has strict rules for representing the objects.

A model starts with a small number of large cubes which are then refined and split up in smaller ones following a well-defined procedure. If represented in this way, objects with similar shapes will have a similar data structure that machine learning methods can handle and compare.

The researchers also proved in their study that the machine learning method achieves an impressive accuracy, a prerequisite for engineering. Nobuyuki Umetani explains: “When simulations are made in the classical way, the results for each tested shape are eventually thrown away after the computation. This means that every new computation starts from scratch. With machine learning, we make use of the data from previous calculations, and if we repeat a calculation, the accuracy increases.”

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Bernd Bickel, Professor at IST Austria
bernd.bickel@ist.ac.at

Originalpublikation:

Nobuyuki Umetani and Bernd Bickel: “Learning Three-Dimensional Flow for Interactive Aerodynamic Design”. 2018, ACM Trans. Graph. 37, 4, Article 89, DOI: 10.1145/3197517.3201325
http://pub.ist.ac.at/~bbickel/downloads/2018_sigg_Learning3DAerodynamics.pdf

Weitere Informationen:

https://www.youtube.com/watch?v=U38cKk-sxyY Videopräsentation
http://visualcomputing.ist.ac.at/publications/2018/LearningFlow/ project page

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht New DFG Research Group "Metrology for THz Communications"
17.07.2019 | Technische Universität Braunschweig

nachricht UCI electrical engineering team develops 'beyond 5G' wireless transceiver
16.07.2019 | University of California - Irvine

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For bacteria, the neighbors co-determine which cell dies first: The physiology of survival

17.07.2019 | Life Sciences

Harvesting energy from the human knee

17.07.2019 | Physics and Astronomy

Neutrino-Observatorium IceCube am Südpol wird ausgebaut

17.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>