Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New interactive machine learning tool makes car designs more aerodynamic

14.08.2018

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model the flow of air around the object by having a computer solve a complex set of equations—a procedure that usually takes hours or even an entire day.


The new software instantly shows stream lines as well as pressure on the surface (color-coded) of interactively deformable shapes.

Nobuyuki Umetani

Nobuyuki Umetani from Autodesk research (now at the University of Tokyo) and Bernd Bickel from the Institute of Science and Technology Austria (IST Austria) have now significantly sped up this process, making streamlines and parameters available in real-time.

Their method, which is the first to use machine learning to model flow around continuously editable 3D objects, will be presented at this year’s prestigious SIGGRAPH conference in Vancouver, where IST Austria researchers are involved in a total of five presentations.

Machine learning can make extremely time-consuming methods a lot faster. Before, the computation of the aerodynamic properties of cars usually took a day. “With our machine learning tool we are able to predict the flow in fractions of a second,” says Nobuyuki Umetani. The idea to use machine learning came up in a discussion between the two long-time collaborators.

“We both share the vision of making simulations faster,” explains IST Austria Professor Bernd Bickel. “We want people to be able to design objects interactively, and therefore we work together to develop data-driven methods,” he adds.

So far, it has been extremely challenging to apply machine learning to the problem of modeling flow fields around objects because of the restrictive requirements of the method. For machine learning, both the input and the output data need to be structured consistently. This structuring of information works well for 2D images, where a picture can be easily represented by a regular arrangement of pixels.

But if a 3D object is represented by units that define its shape, such as a mesh of triangles, the arrangement of these units might change if the shape changes. Two objects that look very similar to a person might therefore appear very different to a computer, as they are represented by a different mesh, and the machine would therefore be unable to transfer the information about the one to the other.

The solution came from Nobuyuki Umetani’s idea to use so-called polycubes to make the shapes manageable for machine learning. This approach, which was originally developed to apply textures to objects in computer animations, has strict rules for representing the objects.

A model starts with a small number of large cubes which are then refined and split up in smaller ones following a well-defined procedure. If represented in this way, objects with similar shapes will have a similar data structure that machine learning methods can handle and compare.

The researchers also proved in their study that the machine learning method achieves an impressive accuracy, a prerequisite for engineering. Nobuyuki Umetani explains: “When simulations are made in the classical way, the results for each tested shape are eventually thrown away after the computation. This means that every new computation starts from scratch. With machine learning, we make use of the data from previous calculations, and if we repeat a calculation, the accuracy increases.”

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Bernd Bickel, Professor at IST Austria
bernd.bickel@ist.ac.at

Originalpublikation:

Nobuyuki Umetani and Bernd Bickel: “Learning Three-Dimensional Flow for Interactive Aerodynamic Design”. 2018, ACM Trans. Graph. 37, 4, Article 89, DOI: 10.1145/3197517.3201325
http://pub.ist.ac.at/~bbickel/downloads/2018_sigg_Learning3DAerodynamics.pdf

Weitere Informationen:

https://www.youtube.com/watch?v=U38cKk-sxyY Videopräsentation
http://visualcomputing.ist.ac.at/publications/2018/LearningFlow/ project page

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht A platform for stable quantum computing, a playground for exotic physics
06.12.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Developing a digital twin
06.12.2019 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>