Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DFG Research Group "Metrology for THz Communications"

17.07.2019

In information technology, data transmission rates are constantly increasing, and the need for fast wireless data communication is also growing rapidly. A new approach to communication technology is needed to enable speeds of 100 gigabits per second and higher. The research group "Metrology for THz Communications" with Professor Thomas Kürner (Technische Universität Braunschweig) as speaker is dedicated to this topic. The research group is one of ten new groups established by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and funded for an initial period of three years. The new alliances will receive a total of around 47 million euros.

At the heart of "Metrology for THz Communications" is communication technology for the largely untouched terahertz frequency range (THz). Terabit per second could be transmitted at this frequency range in the future.


Setup for performing propagation measurements in a data center with the Channel Sounder available at the TU Braunschweig.

Institute for Communications Technology/TU Braunschweig

However, compared totoday's communication technology enormous challenges have to be overcome. The DFG is supporting this research with a total of 2.6 million euros over three years.

Professor Thomas Kürner from the Institute for Communications Technology at the TU Braunschweig, designated speaker of the DFG research group:

"The possibility of performing and evaluating precise measurements in the demanding frequency range above 300 GHz with very high bandwidths at the same time is an essential basis for the future development and implementation of THz communication systems. With the research group Meteracom we will be able to make an important contribution to the solution of these challenges".

An essential aspect to achieve the high data rates are the 10s of GHz bandwidths available above 300 GHz. Scientists from TU Braunschweig and the Physikalisch-Technische Bundesanstalt (PTB), the National Metrology Institute of Germany, have been working on THz communication for more than ten years and have also played a leading role in the development of the world's first wireless communication standard for 300 GHz.

The Meteracom research group is doing research on metrology for future THz communication systems and aims, among other things, to design measurement methods that help to predict the performance of THz communication in real environments.

Within the ten sub-projects of the new DFG research group, all aspects of measurement technology are considered, comprising the traceability of measurements to reference standards, the methods for characterizing the measurement systems themselves, the specific measurement methods for characterizing the components of the communication systems and the transmission channel as well as the measurements required for the later operation of the THz-communication systems.

Besides Professor Kürner, two other researchers from TU Braunschweig (Professor Admela Jukan from the Institute of Computer and Network Engineering and Professor Thomas Schneider from the Institute of High Frequency Technology) as well as Dr. Thomas Kleine-Ostmann from PTB are involved.

The competence and the technical equipment available at the Braunschweig location are supplemented by five further researchers from Paderborn, Marburg, Stuttgart, Lübeck and Ilmenau as well as a Mercator Fellow from the National Physics Laboratory, the British counterpart to PTB.

"Metrology for THz Communications" is one of ten new research groups set up by the DFG alongside two clinical and one research group. The new collaborations will receive a total of around 47 million euros. The maximum funding period for these research groups is two three-year periods.

Research groups enable scientists to devote themselves to current and urgent questions in their fields and to establish innovative working directions. In total, the DFG currently funds 153 research groups, eleven clinical research groups and 13 research groups.

Wissenschaftliche Ansprechpartner:

Prof. Dr.-Ing. Thomas Kürner
Technische Universität Braunschweig
Institute for Communications Technology
Schleinitzstraße 22
38106 Braunschweig
Germany
E-Mail: kuerner@ifn.ing.tu-bs.de
Phone: +49 531 391-2416
www.ifn.ing.tu-bs.de/ifn

Janos Krüger | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-braunschweig.de/

More articles from Information Technology:

nachricht Foundations Laid for Building-Scale GPS Technology
20.01.2020 | Technische Universität Chemnitz

nachricht Man versus machine: Can AI do science?
14.01.2020 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>