Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3-D display takes the eye fatigue out of virtual reality

22.06.2017

Innovative technology mimics the depth cues our eyes are accustomed to in the real-world

There is a great deal of excitement around virtual reality (VR) headsets that display a computer-simulated world and augmented reality (AR) glasses that overlay computer-generated elements with the real world.


The new display creates a 3-D image using optical mapping. An OLED screen is divided into four subpanels that each create a 2-D picture. The spatial multiplexing unit (SMU) shifted each of these images to different depths while aligning the centers of all the images with the viewing axis. Through the eyepiece, each image appears to be at different depth.

Credit: Liang Gao, from the University of Illinois at Urbana-Champaign

Although AR and VR devices are starting to hit the market, they remain mostly a novelty because eye fatigue makes them uncomfortable to use for extended periods. A new type of 3D display could solve this long-standing problem by greatly improving the viewing comfort of these wearable devices.

"We want to replace currently used AR and VR optical display modules with our 3D display to get rid of eye fatigue problems," said Liang Gao, from the University of Illinois at Urbana-Champaign. "Our method could lead to a new generation of 3D displays that can be integrated into any type of AR glasses or VR headset."

Gao and Wei Cui report their new optical mapping 3D display in The Optical Society (OSA) journal Optics Letters. Measuring only 1 x 2 inches, the new display module increases viewing comfort by producing depth cues that are perceived in much the same way we see depth in the real-world.

Overcoming eye fatigue

Today's VR headsets and AR glasses present two 2D images in a way that cues the viewer's brain to combine the images into the impression of a 3D scene. This type of stereoscopic display causes what is known as a vergence-accommodation conflict, which over time makes it harder for the viewer to fuse the images and causes discomfort and eye fatigue.

The new display presents actual 3D images using an approach called optical mapping. This is done by dividing a digital display into subpanels that each create a 2D picture. The subpanel images are shifted to different depths while the centers of all the images are aligned with one another. This makes it appear as if each image is at a different depth when a user looks through the eyepiece. The researchers also created an algorithm that blends the images, so that the depths appear continuous, creating a unified 3D image.

The key component for the new system is a spatial multiplexing unit that axially shifts sub-panel images to the designated depths while laterally shifting the centers of sub-panel images to the viewing axis. In the current setup, the spatial multiplexing unit is made of spatial light modulators that modify the light according to a specific algorithm developed by the researchers.

Although the approach would work with any modern display technology, the researchers used an organic light emitting diode (OLEDs) display, one of the newest display technologies to be used on commercial televisions and mobile devices. The extremely high resolution available from the OLED display ensured that each subpanel contained enough pixels to create a clear image.

"People have tried methods similar to ours to create multiple plane depths, but instead of creating multiple depth images simultaneously, they changed the images very quickly," said Gao. "However, this approach comes with a trade-off in dynamic range, or level of contrast, because the duration each image is shown is very short."

Creating depth cues

The researchers tested the device by using it to display a complex scene of parked cars and placing a camera in front of the eyepiece to record what the human eye would see. They showed that the camera could focus on cars that appeared far away while the foreground remained out of focus. Similarly, the camera could be focused on the closer cars while the background appeared blurry. This test confirmed that the new display produces focal cues that create depth perception much like the way humans perceive depth in a scene. This demonstration was performed in black and white, but the researchers say the technique could also be used to produce color images, although with a reduced lateral resolution.

The researchers are now working to further reduce the system's size, weight and power consumption. "In the future, we want to replace the spatial light modulators with another optical component such as a volume holography grating," said Gao. "In addition to being smaller, these gratings don't actively consume power, which would make our device even more compact and increase its suitability for VR headsets or AR glasses."

Although the researchers don't currently have any commercial partners, they are in discussions with companies to see if the new display could be integrated into future AR and VR products.

###

Paper: W. Cui, L. Gao, "Optical Mapping Near-eye Three-dimensional Display with Correct Focus Cues," Opt. Lett., Volume 42, Issue 13, 2475-2478 (2017). DOI: 10.1364/OL.42.002475.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals and fiber optics.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

http://www.osa.org 

Joshua Miller | EurekAlert!

More articles from Information Technology:

nachricht Three components on one chip
06.12.2018 | Universität Stuttgart

nachricht New quantum materials could take computing devices beyond the semiconductor era
04.12.2018 | University of California - Berkeley

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>