Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite measures Debby's drenching Florida rains

29.06.2012
NASA's TRMM satellite provided data that allowed scientists to calculate Tropical Storm Debby's rainfall totals across Florida. The highest rainfall totals from June 20-27 topped 380 mm (~15 inches) in a wide patch of central Florida from around Titusville on the east coast.

Even though it never became more than a tropical storm, the residents of northern and central Florida will remember Debby. Debby, which formed as a tropical storm on the 23rd of June 2012 in the central Gulf of Mexico, took three full days to reach the Big Bend of Florida just 350 miles away.


Debby's highest rainfall totals from June 20-27 are in excess of 380 mm (~15 inches, shown in purple). The heaviest rains cover a wide patch of central Florida from around Titusville on the east coast to around Homosassa Springs on the west coast within which amounts exceed 260 mm (~10 inches, shown in orange) to over 380 mm in the center. Another band of heavy rain runs east-west across no.Florida from Jacksonville to near Tallahassee. The highest totals are around Lake City and exceed 380 mm. Credit: Credit: NASA/SSAI, Hal Pierce

Although the center didn't make landfall until around 5 p.m. EDT on the afternoon of June 26 when it crossed the coast near Steinhatchee, Florida, Debby's effects were felt well away from the center.

Most of the rain and weather associated with Debby were well to the north and east of the center over Florida, which was effectively inundated with rain squalls originating over the Gulf and wrapping around the eastern side of the storm for 3 days. The result was copious amounts of rain over the central and northern parts of the state in addition to an outbreak of tornadoes over central and southern Florida on June 24.

In addition to capturing detailed images of tropical storms, TRMM is ideally suited to measure rainfall from space. TRMM is a joint mission between NASA and the Japanese space agency JAXA.

For increased coverage, TRMM is used to calibrate rainfall estimates from other additional satellites. The TRMM-based, near-real time Multi-satellite Precipitation Analysis (TMPA) at the NASA Goddard Space Flight Center in Greenbelt, Md. is used to estimate rainfall over a wide portion of the globe. TMPA rainfall totals are shown here for the 7-day period June 20 to 27, 2012 over and around Florida.

TRMM data showed that the highest rainfall totals for the period are in excess of 380 mm (~15 inches). The heaviest rains cover a wide patch of central Florida from around Titusville on the east coast to around Homosassa Springs on the west coast within which amounts exceed 260 mm (~10 inches) to over 380 mm (~15 inches) in the center. Another band of heavy rain is oriented east-west across northern Florida from Jacksonville to near Tallahassee with similar amounts or rain.The highest totals in the band occur around Lake City and exceed 380 mm (~15 inches). This east-west band can be attributed to the interaction of Debby's counterclockwise circulation with the coast and a frontal boundary draped across southern Georgia in an east-west orientation.

After coming ashore, Debby was downgraded to a tropical depression as it crossed northern Florida.

At 5 p.m. EDT on June 27, Debby lost tropical characteristics and became a post-tropical cyclone over the Atlantic Ocean. At that time Debby had maximum sustained winds of 40 mph (65 kmh) and it was located about180 miles (295 km) east of St. Augustine, Fla., near 29.5 North and 78.3 West.

On Thursday, June 28, 2012 at 8 a.m. EDT, the National Hurricane Center noted that showers and thunderstorms associated with post-tropical storm Debby were about 175 miles west-northwest of Bermuda. The shower and thunderstorm activity increased today and the winds are between 15 and 20 mph.Post-tropical Storm Debby continues to move to the northeast and the National Hurricane Center noted that it has a 10 percent chance of re-generating.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>