Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanotech Discovery at Rensselaer Polytechnic Institute Could Lead to Breakthrough in Infrared Satellite Imaging Technology

19.05.2010
Researchers Develop Lens-Less, Gold-Covered “Microlens” That Enhances Imaging Signal Without Increasing Noise

Researchers from Rensselaer Polytechnic Institute have developed a new nanotechnology-based “microlens” that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices.

By leveraging the unique properties of nanoscale gold to “squeeze” light into tiny holes in the surface of the device, the researchers have doubled the detectivity of a quantum dot-based infrared detector. With some refinements, the researchers expect this new technology should be able to enhance detectivity by up to 20 times.

This study is the first in more than a decade to demonstrate success in enhancing the signal of an infrared detector without also increasing the noise, said project leader Shawn-Yu Lin, professor of physics at Rensselaer and a member of the university’s Future Chips Constellation and Smart Lighting Engineering Research Center.

“Infrared detection is a big priority right now, as more effective infrared satellite imaging technology holds the potential to benefit everything from homeland security to monitoring climate change and deforestation,” said Lin, who in 2008 created the world’s darkest material as well as a coating for solar panels that absorbs 99.9 percent of light from nearly all angles.

“We have shown that you can use nanoscopic gold to focus the light entering an infrared detector, which in turn enhances the absorption of photons and also enhances the capacity of the embedded quantum dots to convert those photons into electrons. This kind of behavior has never been seen before,” he said.

Results of the study, titled “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” were published online recently by the journal Nano Letters. The paper also will appear in a forthcoming issue of the journal’s print edition. The U.S. Air Force Office of Scientific Research funded this study. The paper is available online at: http://pubs.acs.org/doi/abs/10.1021/nl100081j

The detectivity of an infrared photodetector is determined by how much signal it receives, divided by the noise it receives. The current state-of-the art in photodetectors is based on mercury-cadmium-telluride (MCT) technology, which has a strong signal but faces several challenges including long exposure times for low-signal imaging. Lin said his new study creates a roadmap for developing quantum dot infrared photodetectors (QDIP) that can outperform MCTs, and bridge the innovation gap that has stunted the progress of infrared technology over the past decade.

The surface plasmon QDIPs are long, flat structures with countless tiny holes on the surface. The solid surface of the structure that Lin built is covered with about 50 nanometers – or 50 billionths of a meter – of gold. Each hole is about 1.6 microns – or 1.6 millionths of a meter – in diameter, and 1 micron deep. The holes are filled with quantum dots, which are nanoscale crystals with unique optical and semiconductor properties.

The interesting properties of the QDIP’s gold surface help to focus incoming light directly into the microscale holes and effectively concentrate that light in the pool of quantum dots. This concentration strengthens the interaction between the trapped light and the quantum dots, and in turn strengthens the dots’ ability to convert those photons into electrons. The end result is that Lin’s device creates an electric field up to 400 percent stronger than the raw energy that enters the QDIP.

The effect is similar to what would result from covering each tiny hole on the QDIP with a lens, but without the extra weight, and minus the hassle and cost of installing and calibrating millions of microscopic lenses, Lin said.

Lin’s team also demonstrated in the journal paper that the nanoscale layer of gold on the QDIP does not add any noise or negatively impact the device’s response time. Lin plans to continue honing this new technology and use gold to boost the QDIP’s detectivity, by both widening the diameter of the surface holes and more effective placement of the quantum dots.

“I think that, within a few years, we will be able to create a gold-based QDIP device with a 20-fold enhancement in signal from what we have today,” Lin said. “It’s a very reasonable goal, and could open up a whole new range of applications from better night-vision goggles for soldiers to more accurate medical imaging devices.”

Co-authors of the paper are Rensselaer Senior Research Scientist James Bur, graduate student Chun-Chieh Chang, and Research Associate Yong-Sung Kim; Yagya D. Sharma, Rajeev V. Shenoi, and Sanjay Krishna of the Center for High Technology Materials at the University of New Mexico, Albuquerque; and Danhong Huang of the Space Vehicles Directorate at the Air Force Research Laboratory, Kirtland Air Force Base.

For more information on Lin’s research, visit:

http://www.rpi.edu/dept/phys/faculty/profiles/lin.html
http://www.rpi.edu/~sylin/
For information on Lin’s “darkest material” and solar panel coating visit:
http://news.rpi.edu/update.do?artcenterkey=2393
http://www.washingtonpost.com/wp-dyn/content/article/2008/02/19/AR2008021902617.html
http://news.rpi.edu/update.do?artcenterkey=2507
http://www.cnn.com/2008/TECH/science/11/06/solar.coating/index.html

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>