Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More speed, less interference

25.04.2014

A semi-analytical model can compute electromagnetic interference on an electronic circuit board ten times faster than existing commercial software

As electronic components on electronic circuit boards continue to shrink, problems of electromagnetic compatibility are arising. Such problems include unwanted ‘noise’ effects due to electromagnetic interference and susceptibility.

“Electromagnetic interference is a critical problem for the electronics industry,” explains Xian-Ke Gao from the A*STAR Institute of High Performance Computing in Singapore. “Engineers are keen to understand how the electronic circuits react. However, it is difficult to measure such effects experimentally, because disassembling the device would affect the physical testing.”

To address this problem, the electronics industry has developed a suite of computer modeling tools, but these are cumbersome and require a lot of computing power. Now, Gao and colleagues have developed a computer model that is able to solve such problems more than ten times faster than existing models1.

Fairly coarse models are typically used to model electromagnetic interference effects on electronic circuit boards (see image). To do this, the device is divided into a grid of small cubes, and the electromagnetic fields to and from each cube are modeled individually. This approach requires a lot of computing power, especially if the grid size is small, but it has the advantage that it is flexible and can be adapted to various geometries. Except for interference effects, the same computer models can be applied to calculate electromagnetic fields for a range of electrical devices other than circuit boards.

A more targeted and efficient approach is required to measure interference effects. Researchers use mathematical equations to describe the electrical currents in a conducting wire. The physics of these transmission-line equations are well understood and, once adapted to the unique properties of circuit boards, are far easier to solve by a computer algorithm than the other, coarser modeling.

The first tests of the software package developed by the A*STAR researchers, which is based on the transmission-line equations, reliably solved a number of standard problems for electronic circuits. Compared to commercial models, the new software achieved very good agreement, especially for the main region of interest — frequencies below one gigahertz.

Speed, however, is the key advantage of using the software. Whereas commercial software requires more than two hours of computing on a regular laptop, the A*STAR software package needed less than ten minutes for the same task, explains Gao. “Our computational problem-solving kit can shorten electromagnetic interference trouble-shooting in the product design phase and therefore translates into time and cost savings for the industry.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing 

Journal information

Gao, X.-K., Zhao, H., Li, E.-P. & Hoefer, W. J. R. Radiated electromagnetic immunity analysis of flex cable with ground plane using transmission line equations. IEEE Transactions on Electromagnetic Compatibility 55, 875–882 (2013).

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>