Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT, NIST create first room-temp 'magnon switch' with industrially useful properties

16.06.2020

Build approach could lead to entirely new and more efficient logic switches for computer chips.

Scientists at the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) have demonstrated a potentially new way to make switches inside a computer's processing chips, enabling them to use less energy and radiate less heat.


This artist's conception shows the difference between a magnon's "open" and "closed" states. Exciting the magnetic spin (red arrow) of the top electron sends a wave of spin changes traveling downward through the chain, creating a voltage that can be read out at the bottom. At left, the net direction of the spins in the materials YIG and Py (two thick blue layers) point in the same direction (large blue arrows), and the waves remain large through the electron chain, representing an open state. But at right, the net spin in the YIG and Py point in opposite directions, reducing the amplitude of the waves in the YIG and indicating a closed state.

Credit: N. Hanacek / NIST

The team has developed a practical technique for controlling magnons, which are essentially waves that travel through magnetic materials and can carry information. To use magnons for information processing requires a switching mechanism that can control the transmission of a magnon signal through the device.

While other labs have created systems that carry and control magnons, the team's approach brings two important firsts: Its elements can be built on silicon rather than exotic and expensive substrates, as other approaches have demanded.

It also operates efficiently at room temperature, rather than requiring refrigeration. For these and other reasons, this new approach might be more readily employed by computer manufacturers.

"This is a building block that could pave the way to a new generation of highly efficient computer technology," said team member Patrick Quarterman, a physicist at the NIST Center for Neutron Research (NCNR). "Other groups have created and controlled magnons in materials that do not integrate well with computer chips, while ours is built on silicon. It's much more viable for industry."

Magnons, also called spin waves, would harness the property of electron spin to transfer information. One reason computer chips get so hot is that in a conventional circuit, electrons travel from one place to another, and their movement generates heat. A magnon, however, moves through a long string of electrons, which themselves do not need to travel.

Instead, each electron's spin direction -- which is a bit like an arrow stretching through the axis of a spinning top -- magnetically influences the spin direction of the next electron in line. Tweaking the spin of the first electron sends a wave of spin changes propagating down the string. Because the electrons themselves would not move, far less heat would result.

Because the electron string stretches from one place to another, the magnon can carry information as it travels down the string. In chips based on magnon technology, larger and smaller wave heights (amplitudes) could represent ones and zeros. And because the wave height can change gradually, a magnon could represent values between one and zero, giving it more capabilities than a conventional digital switch has.

While these advantages have made magnon-based information processing a tantalizing idea in theory, up until now most of the successful structures have been built within multiple layers of thin films that sit atop a base of gadolinium gallium garnet, rather than atop the silicon that commercial chips are made from. This "GGG" material would be prohibitively expensive to mass produce.

"It's a fun physics playground that demonstrates the basic principles," Quarterman said, "but it's not practical for industrial-scale production."

However, Yabin Fan and his colleagues at MIT used a creative engineering approach to layer the thin films atop a base of silicon. Their goal was to build their system on top of the material that the computer industry has been long accustomed to working with, thereby allowing magnons to interface with conventional computer technology.

Initially, their multilayered creation did not behave as expected, but scientists at the NCNR used a technique called neutron reflectometry to explore the magnetic behavior within the device. The neutrons revealed an unexpected but advantageous interaction between two of the thin film layers: Depending on the amount of magnetic field applied, the materials order themselves in different ways that could represent a switch's "on" or "off" state, as well as positions between on and off -- making it akin to a valve.

"As you lower the magnetic field, the direction switches," said Fan, a postdoctoral associate in MIT's electrical engineering department. "The data is very clear and showed us what was happening at different depths. There's a very strong coupling between the layers."

The magnon switch could find use in devices that do another sort of calculating as well. Conventional digital switches can only exist in either on or off states, but because the amplitude of the spin wave can change gradually from small to large, it is possible that magnons could be used in analog computing applications, where the switch has values lying between 0 and 1.

"That's why we consider this to be more like a valve," Quarterman said. "You can open or close it a bit at a time."

Media Contact

Chad Boutin
boutin@nist.gov

 @NIST

http://www.nist.gov 

Chad Boutin | EurekAlert!
Further information:
https://www.nist.gov/news-events/news/2020/06/mit-nist-create-first-room-temp-magnon-switch-industrially-useful
http://dx.doi.org/10.1103/PhysRevApplied.13.061002

Further reports about: Electrons MIT NIST computer technology information processing magnetic field magnons

More articles from Information Technology:

nachricht Spintronics: Faster data processing through ultrashort electric pulses
02.07.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Multi-sensor system for the precise and efficient inspection of roads, railways and similar assets
01.07.2020 | Fraunhofer IPM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

A new view of microscopic interactions

02.07.2020 | Life Sciences

B-cell protectors

02.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>