Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking fish and tailoring radar to warn of bridge peril

01.09.2010
Floods cut down more bridges than fire, wind, earthquakes, deterioration, overloads and collisions combined, costing lives and hundreds of millions of dollars in damage.

The speed and turbulence of an overflowing stream scours away the river bottom that provides the support for a bridge foundation, causing more than 60 percent of bridge failures in the U.S. in the last 30 years.

Currently, "there is no way to determine risk during these crucial events," said Xiong "Bill" Yu, an assistant professor of civil engineering at the Case School of Engineering.

To change that, Yu has begun designing what he calls smart infrastructure: underwater sensors that relay real-time information about how much river bottom has been stripped away and how stable, or unstable, the supports of a bridge remain. His work is being funded by a $450,001 CAREER grant received from the National Science Foundation in 2009.

"We don't fully understand how scouring takes place," Yu said. Water passing a bridge support forms vortices, which erode the river bottom. But how and at what rate scour occurs is complex. River bottoms usually consist of sand, clay, shale or sandstone or a mix, and each material acts a little differently in a strong current, he explained.

To characterize each vortex, Yu's lab is building flow sensors based on tiny, hair-like sensors that salmon have on the sides of their bodies. Researchers have found the fish determine flow direction by the direction the hairy cells move and speed by the time delay as turbulence passes different sensors. Yu's lab built sensors comprised of micro pillars made with piezoelectric fibers mounted on flexible copper rods. The fibers produce electric signals reflecting flow direction and speed. These have proven sensitive and accurate; the lab is now developing arrays for real-time flow and turbulence sensing.

To determine the amount of sediments being scoured away, his lab has built sensors that constantly measure the topography where the water meets the river bottom around the bridge supports. These sensors employ a technology called time domain reflectometry, in which radar is fired along waveguides installed at critical ground locations. The electromagnetic waves return at different speeds depending on the materials they strike and distance traveled. The waves are analyzed with an algorithm developed by Yu's lab to reveal minute changes in the depth and density of the substrate sediments.

The sensors proved durable, sensitive and accurate when tested on bridge supports 10-20 feet below the surface. The next step is to determine the maximum depth and flow conditions under which the sensors provide accurate and immediate information.

Yu's lab is also investigating sensors that can monitor the stability of the bridge structure itself.

The package of sensors will provide warnings not currently available and enable Yu's lab to develop computational scouring models and effective scouring countermeasures.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Information Technology:

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>