Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic trampoline may help create networks of quantum computers

17.07.2018

A microscopic trampoline could help engineers to overcome a major hurdle for quantum computers, researchers from the University of Colorado Boulder and the National Institute of Standards and Technology (NIST) report in a new study.

Scientists at JILA, a joint institute of CU Boulder and NIST, have developed a device that uses a small plate to absorb microwave energy and bounce it into laser light--a crucial step for sending quantum signals over long distances.


This chip, designed by researchers at JILA and measuring less than a half-inch across, converts microwave energy into laser light.

Credit: Peter Burns and Dan Schmidt

Graduate student Peter Burns said that his team's research could one day help engineers to link together huge networks of quantum computers.

"We're anticipating a growth in quantum computing and are trying to create a link that will be usable for these networks," said Burns, one of two lead authors of the new study.

Over the last decade, several tech firms have made inroads into designing prototype quantum chips, which have the potential to be much more powerful than traditional computers. But getting the information out of such chips is a difficult feat.

One big challenge lies in translation. Top-of-the-line quantum chips like Google's Bristlecone or Intel's Tangle Lake send out data in the form of photons, or tiny packets of light, that wobble at microwave frequencies. Much of modern communications, however, relies on fiberoptic cables that can only send visible light.

In research published today in Nature Physics, the team reports that zapping a small plate made of silicon-nitride with a beam of microwave photons causes it to vibrate and eject photons from its other end. But those photons now quiver at optical frequencies.

The researchers were able to achieve that hop, skip and a jump at an efficiency of 47 percent, meaning that for every two microwave photons that hit the plate, close to one optical photon came out. That's a much better performance than other methods for converting microwaves into light, such as by using crystals or magnets, Burns said.

He added that what's really impressive about the device is its quietness. Even in the ultra-cold lab facilities where quantum chips are stored, trace amounts of heat can cause the team's trampoline to shake. That, in turn, sends out excess photons that contaminate the signal. To get rid of the clutter, the researchers invented a new way to measure that noise and subtract it from their light beams.

"What we do is measure that noise on the microwave side of the device, and that allows us to distinguish on the optical side etween the signal and the noise," Burns said.

The team will need to bring down the noise even more for the trampoline to become a practical tool. But the potential benefits are huge, said Konrad Lehnert of JILA and a co-author of the new research.

"It's clear that we are moving toward a future where we will have little prototype quantum computers," he said. "It will be a huge benefit if we can network them together."

###

Andrew Higginbotham, now at Microsoft Research, was the co-lead author of this research. Other co-authors included Maxwell Urmey, Robert Peterson, Nir Kampel, Ben Brubaker, Graeme Smith and Cindy Regal, all at JILA. Additionally, Smith is an assistant professor and Regal is an associate professor in CU Boulder's Department of Physics.

Daniel Strain | EurekAlert!
Further information:
https://www.colorado.edu/today/2018/07/16/microscopic-trampoline-may-help-create-networks-quantum-computers
http://dx.doi.org/10.1038/s41567-018-0210-0

More articles from Information Technology:

nachricht Bursting the clouds for better communication
18.10.2018 | Université de Genève

nachricht Research on light-matter interaction could improve electronic and optoelectronic devices
11.10.2018 | Rensselaer Polytechnic Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Gravitational Waves Could Shed Light on Dark Matter

22.10.2018 | Physics and Astronomy

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>