Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ManuCloud: Infrastructure for IT integration from equipment to cross-company production networks

12.09.2013
After three years the EC funded project ManuCloud was successfully finished. As a main result, the project members Fraunhofer IPA, acp-IT, nxtControl, and University of Strathclyde launched a web platform for the provision of customizable products by means inter-factory collaboration among manufacturing companies.

The increasing demand for customizable products, especially of high value goods or throughout high-tech industry branches such as automotive, photovoltaic or consumer electronics causes a need for flexible manufacturing environments. Even more, especially in these industries, manufacturing of products is not only executed at singular premises but throughout production networks is best practice.

For this reason, customization of certain products in most cases not only concerns on production site but influence parts of the related supply chain. This makes it necessary to consider the interdependencies of sub-products or processes delivered by the suppliers and their customization options during the design of the product and setup of the production network. Manufacturers have to closely cooperate in this network in order to exchange information about product specifications and to jointly plan delivery dates and other logistic details. Obviously, this causes efforts on each production network participant’s side and also may delay feedback towards end-customers.

In order to overcome these issues, the ManuCloud project followed the cloud manufacturing approach, i.e. it transferred service concepts from the computing domain (e.g. software-as-a-service) to the manufacturing domain (manufacturing-as-a-service) in order to (semi-)automate the integration of production networks on IT level.

In detail this means, that in addition to the exchange of business level information which is already well-established in industry, the developed web platform serves as an integration tool for product specifications and manufacturing IT systems on production network level. This could be achieved by describing products or process capabilities by means of manufacturing service descriptions which are generated from factory internal IT systems like MES (Manufacturing Execution System) in a semi-automated way. This generation of manufacturing service descriptions can take place consistently throughout all factory internal IT layers – starting with the description of equipment capabilities which are step by step aggregated and mapped to the services a factory provides.

Those service descriptions also include configuration options for the customization process of each (sub-)product or process provided by them and can be composed by means of a tree structure to end-products, i.e. the related supply chains.

Based on those end-product descriptions which are based on the underlying service descriptions and use their configuration options, user-specific adaption of products to the specific wishes is provided via a product configurator. This configurator automatically adapts to the respective product characteristics and configuration options provided and herewith represents a general tool to be reused for all products provided via the platform.

After configuring and ordering a product, MES-level control functionalities are provided throughout the production network, i.e. tracking of production status and measurement results, or even the optimization of configuration settings according to previous process results.

The ManuCloud consortium: The ManuCloud consortium was composed of eight partners from four different EU member states (Austria, Germany, Hungary, United Kingdom). The partners were the following: advanced clean production Information Technology GmbH (acp-IT), Robert Bosch GmbH, Fraunhofer Institute for Manufacturing Engineering and Automation (IPA, consortium leader), Fraunhofer Research Institution for Organics, Materials and Electronic Devices COMEDD, HELIATEK GmbH, Tridonic Dresden GmbH & Co. KG (formerly LEDON OLED Lighting GmbH & Co. KG), nxtControl GmbH, Computer and Automation Research Institute of the Hungarian Academy of Sciences, and the University of Strathclyde.

Thanks to all partners!

The research leading to this result has received funding from the European Union’s 7th Framework Programme (grant agreement no. 260142).

Jörg Walz | Fraunhofer-Institut
Further information:
http://www.manucloud-project.eu

More articles from Information Technology:

nachricht ETRI exchanged quantum information on daylight in a free-space quantum key distribution
10.12.2018 | National Research Council of Science & Technology

nachricht Three components on one chip
06.12.2018 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>