Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the internet more energy efficient through systemic optimization

13.02.2020

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.


Through optimizing the system, researchers from Chalmers University of Technology, Sweden, have helped create a model for a more energy efficient internet system. Algorithms for managing data center traffic, smart, error correcting data chips, and optical frequency combs can all contribute to reducing energy consumption.

Credit: Yen Strandqvist/Chalmers

But to accommodate this digital lifestyle, a huge amount of data needs to be transmitted through fibre optic cables - and that amount is increasing at an almost unimaginable rate, consuming an enormous amount of electricity.

This is completely unsustainable - at the current rate of increase, if no energy efficiency gains were made, within ten years the internet alone would consume more electricity than is currently generated worldwide.

Electricity production cannot be increased at the same rate without massively increasing the usage of fossil fuels for electricity generation, in turn leading to a significant increase in carbon dioxide emissions.

"The challenge lies in meeting that inevitable demand for capacity and performance, while keeping costs at a reasonable level and minimising the environmental impacts," says Peter Andrekson, Professor of Photonics at the Department of Microtechnology and Nanoscience at Chalmers.

Peter Andrekson was the leader of the 5-year research project 'Energy-efficient optical fibre communication', which has contributed significant advances to the field.

In the early phase of the project, the Chalmers researchers identified the biggest energy drains in today's fibre optic systems. With this knowledge, they then designed and built a concept for a system for data transmission which consumes as little energy as possible.

Optimising the components of the system against each other results in significant energy savings.

Currently, some of the most energy-intensive components are error-correction data chips, which are used in optical systems to compensate for noise and interference. The Chalmers researchers have now succeeded in designing these data chips with optimised circuits.

"Our measurements show that the energy consumption of our refined chips is around 10 times less than conventional error-correcting chips," says Per Larsson-Edefors, Professor in Computer Engineering at the Department of Computer Science and Engineering at Chalmers.

At a systemic level, the researchers also demonstrated the advantages of using 'optical frequency combs' instead of having separate laser transmitters for each frequency channel. An optical frequency comb emits light at all wavelengths simultaneously, making the transmitter very frequency-stable. This makes reception of the signals much easier - and thus more energy efficient.

Energy savings can also be made through controlling fibre optic communications at the network level. By mathematically modelling the energy consumption in different network resources, data traffic can be controlled and directed so that the resources are utilised optimally.

This is especially valuable if traffic varies over time, as is the case in most networks. For this, the researchers developed an optimisation algorithm which can reduce network energy consumption by up to 70%.

The recipe for these successes has been the broad approach of the project, with scientists from three different research areas collaborating to find the most energy-saving overall solution possible, without sacrificing system performance.

These research breakthroughs offer great potential for making the internet of the future considerably more energy-efficient. Several scientific articles have been published in the three research disciplines of optical hardware, electronics systems and communication networks.

"Improving the energy efficiency of data transmission requires multidisciplinary competence. The challenges lie at the meeting points between optical hardware, communications science, electronic engineering and more. That's why this project has been so successful" says Erik Agrell, Professor in Communications Systems at the Department of Electrical Engineering at Chalmers.

More on the research

The 5-year research project 'Energy-efficient optical fibre communication' ran from 2014-2019, and was financed by the Knut and Alice Wallenberg Foundation.The research could have huge potential to make future internet usage significantly more energy efficient. It has resulted in several research publications within the three scientific disciplines of optical hardware, electronics systems and communications networks, including the following three:

Energy-Efficient High-Throughput VLSI Architectures for Product-Like Codes in the Journal of Lightwave Technology

Phase-coherent lightwave communications with frequency combs, in the journal Nature Communications

Joint power-efficient traffic shaping and service provisioning for metro elastic optical networks, in the journal IEEE/OSA Journal of Optical Communications and Networking,

Some more information on the smart, error correcting data chips, or integrated circuits:

The data chips, or integrated circuits, have been designed by Chalmers and manufactured in Grenoble in France. The Chalmers researchers subsequently verified the chips' performance and measured the energy usage, which was just a tenth of current error-correcting chips. At a data transfer speed of 1 terabit per second (1 terabit = 1 trillion bits), the Chalmers error-correcting designs have been shown to draw an energy of around 2 picojoules (1 picojoule = 1 trillionth of a joule) per bit. This equates to a power consumption of 2 Watts at this data rate. Comparatively, the current energy usage at such high transfer speeds is around 50 picojoules per bit, around 50 Watts."

###

For more information, contact:

Optical hardware:

Peter Andrekson, leader of the research project, and Professor of Photonics at the Department of Microtechnology and Nanoscience at Chalmers peter.andrekson@chalmers.se +46 31 772 16 06

Electronics systems:

Per Larsson-Edefors, Professor in Computer Engineering at the Department of Computer Science and Engineering at Chalmers perla@chalmers.se +46 31 772 17 00

Communications networks:

Erik Agrell, Professor in Communications Systems at the Department of Electrical Engineering at Chalmers agrell@chalmers.se +46 31 772 17 62

Joshua Worth | EurekAlert!
Further information:
https://chalmers.se/en/departments/e2/news/Pages/Making-the-internet-more-energy-efficient-through-systemic-optimisation.aspx
http://dx.doi.org/10.1038/s41467-019-14010-7

More articles from Information Technology:

nachricht Chip-based devices improve practicality of quantum-secured communication
23.03.2020 | The Optical Society

nachricht Army scientists create quantum sensor that covers entire radio frequency spectrum
20.03.2020 | U.S. Army Research Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>