Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making memories: Practical quantum computing moves closer to reality

19.06.2013
Researchers at the University of Sydney and Dartmouth College have developed a new way to design quantum memory, bringing quantum computers a step closer to reality. The results will appear June 19 in the journal Nature Communications.

Quantum computing may revolutionize information processing, by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics. But figuring out how to engineer such a machine, including vital subsystems like quantum memory, remains elusive.

In the worldwide drive to build a useful quantum computer, the simple-sounding task of effectively preserving quantum information in a quantum memory is a major challenge. The same physics that makes quantum computers potentially powerful also makes them likely to experience errors, even when quantum information is just being stored idly in memory. Keeping quantum information "alive" for long periods, while remaining accessible to the computer, is a key problem.

The Sydney-Dartmouth team's results demonstrate a path to what is considered a holy grail in the research community: storing quantum states with high fidelity for exceptionally long times, even hours according to their calculations. Today, most quantum states survive for tiny fractions of a second.

"Our new approach allows us to simultaneously achieve very low error rates and very long storage times," said co-senior author Dr. Michael J. Biercuk, director of the Quantum Control Laboratory in the University of Sydney's School of Physics and ARC Centre for Engineered Quantum Systems. "But our work also addresses a vital practical issue – providing small access latencies, enabling on-demand retrieval with only a short time lag to extract stored information."

The team's new method is based on techniques to build in error resilience at the level of the quantum memory hardware, said Dartmouth Physics Professor Lorenza Viola, a co-senior author who is leading the quantum control theory effort and the Quantum Information Initiative at Dartmouth.

"We've now developed the quantum 'firmware' appropriate to control a practically useful quantum memory," added Biercuk. "But vitally, we've shown that with our approach a user may guarantee that error never grows beyond a certain level even after very long times, so long as certain constraints are met. The conditions we establish for the memory to function as advertised then inform system engineers how they can construct an efficient and effective quantum memory. Our method even incorporates a wide variety of realistic experimental imperfections."

The study was supported by the U.S. Army Research Office, National Science Foundation, Intelligence Advanced Research Projects Activity, and ARC Centre for Engineered Quantum Systems.

Broadcast studios Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

John Cramer | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>