Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making artificial intelligence explainable

03.07.2019

A look inside neural networks

Artificial intelligence (AI) is already firmly embedded in our everyday lives and is conquering more and more territory. For example, voice assistants are already an everyday item in many people’s smartphones, cars and homes. Progress in the field of AI is based primarily on the use of neural networks.


The new Spectral-wise Relevance Analysis technology renders visible the criteria used by AI systems when making decisions.

© Fraunhofer HHI

Mimicking the functionality of the human brain, neural networks link mathematically defined units with one another. But in the past it was not known just how a neural network makes decisions. Researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI and Technische Universität Berlin have developed a technology that reveals the criteria AI systems use when making decisions.

The innovative Spectral Relevance Analysis (SpRAy) method based on Layerwise Relevance Propagation technology provides a first peek inside the “black box”.

... more about:
»AI »AI systems »Analysis »HHI »LRP »artificial »neural networks

Today it’s almost impossible to find an area in which artificial intelligence is irrelevant, whether in manufacturing, advertising or communications. Many companies use learning and networked AI systems, for example to generate precise demand forecasts and to exactly predict customer behavior. This approach can also be used to adjust regional logistics processes. Healthcare also uses specific AI activities, such as prognosis generation on the basis of structured data.

This plays a role for example in image recognition: X-ray images are input into an AI system which then outputs a diagnosis. Proper detection of image content is also crucial to autonomous driving, where traffic signs, trees, pedestrians and cyclists have to be identified with complete accuracy. And this is the crux of the matter:

AI systems have to provide absolutely reliable problem-solving strategies in sensitive application areas such as medicinal diagnostics and in security-critical areas. However, in the past is hasn't been entirely clear how AI systems make decisions. Furthermore, the predictions depend on the quality of the input data.

Researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI and Technische Universität Berlin have now developed a technology, Layer-wise Relevance Propagation (LRP), which renders the AI forecasts explainable and in doing so reveals unreliable problem solution strategies. A further development of LRP technology, referred to as Spectral Relevance Analysis (SpRAy), identifies and quantifies a broad spectrum of learned decisionmaking behaviors and thus identifies undesirable decisions even in enormous datasets.

Transparent AI

In practice the technology identifies the individual input elements which have been used to make a prediction. Thus for example when an image of a tissue sample is input into an AI system, the influence of each individual pixel is quantified in the classification results. In other words, as well as predicting how “malignant” or “benign” the imaged tissue is, the system also provides information on the basis for this classification. “Not only is the result supposed to be correct, the solution strategy is as well.

In the past, AI systems have been treated as black boxes. The systems were trusted to do the right things. With our open-source software, which uses Layer-Wise Relevance Propagation, we’ve succeeded in rendering the solution-finding process of AI systems transparent,” says Dr. Wojciech Samek, head of the "Machine Learning” research group at Fraunhofer HHI. “We’re using LRP to visualize and interpret neural networks and other machine learning models. We use LRP to measure the influence of every input variable in the overall prediction and parse the decisions made by the classifiers,” adds Dr. Klaus-Robert Müller, Professor for Machine Learning at TU Berlin.

Unreliable solution strategies

Trusting the results of neural networks necessarily means understanding how they work. According to the research team’s tests, AI systems don’t always apply the best strategies to reach a solution. For example, one well-known AI system classifies images based on context. It allocated photographs to the category ‘Ship’ when a large amount of water was visible in the picture. It wasn’t solving the actual task of recognizing images of ships, even if in the majority of cases it picked out the right photos. “Many AI algorithms use unreliable strategies and arrive at highly impractical solutions,” says Samek, summarizing the results of the investigations.

Watching neural networks think

The LRP technology decodes the functionality of neural networks and finds out which characteristic features are used, for example to identify a horse as a horse and not as a donkey or a cow. It identifies the information flowing through the system at each node of the network. This makes it possible to investigate even very deep neural networks.

The Fraunhofer HHI and TU Berlin research teams are currently formulating new algorithms for the investigation of further questions in order to make AI systems even more reliable and robust. The project partners have published their research results in the journal Nature Communications (see link below).

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2019/july/a-look-inside-neural-...

Kathleen Schröter | Fraunhofer Research News

Further reports about: AI AI systems Analysis HHI LRP artificial neural networks

More articles from Information Technology:

nachricht Aircraft safety: Assessing the danger of drone strike - unique test bench to measure collision impact
03.07.2019 | Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut

nachricht Researchers cast neural nets to simulate molecular motion
03.07.2019 | DOE/Los Alamos National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Making artificial intelligence explainable

03.07.2019 | Information Technology

Research on the sustainable conversion of lignin into valuable chemical compounds is attracting further funding

03.07.2019 | Life Sciences

Environmentally friendly slide bearings with water lubrication: Sliding along on water

03.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>