Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic antiparticles offer new horizons for information technologies

16.08.2018

Computer simulations reveal new behavior of antiskyrmions in gradually increased electric currents

Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. Now, physicists have revealed new behavior involving the antiparticle equivalent of skyrmions in a ferromagnetic material.


Matter and antimatter in the nanoscale magnetic universe: a gas of skyrmions (purple) and antiskyrmions (green) generated from the trochoidal dynamics of a single antiskyrmion seed.

Ill./©: Joo-Von Kim

The researchers demonstrated their findings using advanced computer simulations that can accurately model magnetic properties of nanometer-thick materials. The results, which were obtained by scientists at Uppsala University in Sweden, at Kiel University and Johannes Gutenberg University Mainz in Germany, and at Université Paris-Saclay in France, were recently published in Nature Electronics.

Moving electrons around in circuits is the basis for creating useful functions in electronics. But would their guiding principles still apply for positrons, i.e., the antiparticle version of electrons?

Besides their scarcity in nature, basic electrodynamics suggests that everything would essentially function the same way with positive charges as it does with the negative ones of electrons – up to a difference in sign, since electrons and positrons move in opposite directions in electromagnetic fields.

However, this question remains open for nanoscale magnetic particles called skyrmions. Skyrmions represent whirls of magnetic moments that extend across a few nanometers and can be found in magnetic films a few atoms thick. In the same way that spheres and doughnuts have different topologies, skyrmions possess a special property called topological charge which plays a similar role to electric charges when their dynamics are concerned.

For example, if an applied force causes skyrmions to be deflected toward the left, then that same force will lead antiskyrmions, their antiparticle counterpart, to deflect toward the right. Since the first experimental observations in 2009, skyrmions have been the focus of intense research because they offer new ways to store data and process information.

Simulation shows periodical evolution of skyrmion–antiskyrmions pairs

Now physicists have shown that much richer phenomena can occur in nanometer-thick ferromagnets in which both skyrmions and antiskyrmions coexist. By using state-of-the-art simulation techniques to compute the magnetic properties and dynamics in such films, they studied how skyrmions and antiskyrmions respond when electric currents are applied to exert a force on them. At low currents, the expected behavior is seen where opposite topological charges get deflected in opposite directions as a result of the same applied forces.

As the current is gradually increased, however, their motion no longer mirrors each other. While skyrmions continue to travel in straight lines, antiskyrmions begin to undergo curved trajectories, initially as transients and then continuously as the currents are further increased. In the latter the trajectories resemble trochoids, similar to the curve traced out by the pedal of a bicycle that is pedaled along a straight path. These striking results illustrate that opposite topological charges can in fact behave very differently.

But more surprises were still in store. By increasing the amount of energy transferred to the system from the applied currents, the researchers found that the trochoidal motion can evolve to skyrmion–antiskyrmions pairs being created periodically. Because they move differently, the skyrmions created readily propagate away while the trochoidal motion of antiskyrmions means that they remain more localized to where they are created.

Remarkably, each antiskyrmion created subsequently becomes a new source of pairs, resulting in a proliferation of such particles. "To put this into perspective: this is akin to sending a single positron through a strong magnetic field and getting a gas of electrons and positrons in return," explained Dr. Bertrand Dupé, researcher in the Interdisciplinary Spintronics Research Group at Johannes Gutenberg University Mainz (JGU) and senior author of the study.

Results may provide hints to the matter/antimatter enigma

The consequences of this theoretical work are potentially far-reaching. For future technologies, the study suggests that antiskyrmions could be a ready source of skyrmions, which would be crucial for any application that uses skyrmions to transmit and store information. Moreover, the onset of trochoidal motion sets the ultimate speed limit of such topological charges, which is an important parameter in designing any future circuits using skyrmions.

More fundamentally, the work may provide hints for solving a bigger mystery on cosmological scales, namely, why there is more matter than antimatter in the observable universe. Because of the asymmetry in the motion of skyrmion and antiskyrmions, the simulations show that there is always an excess of skyrmions after pair creation, so the imbalance between "matter" and "antimatter" in these ferromagnetic films is a natural consequence of their dynamics at high energies. "In the nanoscale magnetic universe, at least, matter can arise naturally from a single antiparticle seed," Dupé said.

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_antiskyrmionen.jpg
Matter and antimatter in the nanoscale magnetic universe: a gas of skyrmions (purple) and antiskyrmions (green) generated from the trochoidal dynamics of a single antiskyrmion seed.
Ill./©: Joo-Von Kim

Wissenschaftliche Ansprechpartner:

Dr. Ulrike Ritzmann
Department for Physics and Astronomy
Uppsala University
751 20 Uppsala, SWEDEN
e-mail: ulrike.ritzmann@physics.uu.se
http://katalog.uu.se/profile/?id=N17-1200

Dr. Bertrand Dupé
Institut of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone + 49 6131 39-25921
e-mail: bertdupe@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/team/bertrand-dupe/

Originalpublikation:

Ulrike Ritzmann et al., Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin-orbit torques, Nature Electronics, 13 August 2018,
DOI: 10.1038/s41928-018-0114-0
https://www.nature.com/articles/s41928-018-0114-0

Weitere Informationen:

https://www.sinova-group.physik.uni-mainz.de/ – Interdisciplinary Spintronics Research Group (INSPIRE)
https://www.spice.uni-mainz.de/ – Spin Phenomena Interdisciplinary Center (SPICE)
http://www.uni-mainz.de/presse/aktuell/4857_ENG_HTML.php – "Antiferromagnetic materials allow for processing at terahertz speeds" (24 May 2018)
http://www.uni-mainz.de/presse/18238_ENG_HTML.php – "Mainz University opens Spin Phenomena Interdisciplinary Center to accelerate spin research" (22 April 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH
09.07.2020 | Association for Computing Machinery

nachricht Virtual Reality Environments for the Home Office
09.07.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>