Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic antiparticles offer new horizons for information technologies


Computer simulations reveal new behavior of antiskyrmions in gradually increased electric currents

Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. Now, physicists have revealed new behavior involving the antiparticle equivalent of skyrmions in a ferromagnetic material.

Matter and antimatter in the nanoscale magnetic universe: a gas of skyrmions (purple) and antiskyrmions (green) generated from the trochoidal dynamics of a single antiskyrmion seed.

Ill./©: Joo-Von Kim

The researchers demonstrated their findings using advanced computer simulations that can accurately model magnetic properties of nanometer-thick materials. The results, which were obtained by scientists at Uppsala University in Sweden, at Kiel University and Johannes Gutenberg University Mainz in Germany, and at Université Paris-Saclay in France, were recently published in Nature Electronics.

Moving electrons around in circuits is the basis for creating useful functions in electronics. But would their guiding principles still apply for positrons, i.e., the antiparticle version of electrons?

Besides their scarcity in nature, basic electrodynamics suggests that everything would essentially function the same way with positive charges as it does with the negative ones of electrons – up to a difference in sign, since electrons and positrons move in opposite directions in electromagnetic fields.

However, this question remains open for nanoscale magnetic particles called skyrmions. Skyrmions represent whirls of magnetic moments that extend across a few nanometers and can be found in magnetic films a few atoms thick. In the same way that spheres and doughnuts have different topologies, skyrmions possess a special property called topological charge which plays a similar role to electric charges when their dynamics are concerned.

For example, if an applied force causes skyrmions to be deflected toward the left, then that same force will lead antiskyrmions, their antiparticle counterpart, to deflect toward the right. Since the first experimental observations in 2009, skyrmions have been the focus of intense research because they offer new ways to store data and process information.

Simulation shows periodical evolution of skyrmion–antiskyrmions pairs

Now physicists have shown that much richer phenomena can occur in nanometer-thick ferromagnets in which both skyrmions and antiskyrmions coexist. By using state-of-the-art simulation techniques to compute the magnetic properties and dynamics in such films, they studied how skyrmions and antiskyrmions respond when electric currents are applied to exert a force on them. At low currents, the expected behavior is seen where opposite topological charges get deflected in opposite directions as a result of the same applied forces.

As the current is gradually increased, however, their motion no longer mirrors each other. While skyrmions continue to travel in straight lines, antiskyrmions begin to undergo curved trajectories, initially as transients and then continuously as the currents are further increased. In the latter the trajectories resemble trochoids, similar to the curve traced out by the pedal of a bicycle that is pedaled along a straight path. These striking results illustrate that opposite topological charges can in fact behave very differently.

But more surprises were still in store. By increasing the amount of energy transferred to the system from the applied currents, the researchers found that the trochoidal motion can evolve to skyrmion–antiskyrmions pairs being created periodically. Because they move differently, the skyrmions created readily propagate away while the trochoidal motion of antiskyrmions means that they remain more localized to where they are created.

Remarkably, each antiskyrmion created subsequently becomes a new source of pairs, resulting in a proliferation of such particles. "To put this into perspective: this is akin to sending a single positron through a strong magnetic field and getting a gas of electrons and positrons in return," explained Dr. Bertrand Dupé, researcher in the Interdisciplinary Spintronics Research Group at Johannes Gutenberg University Mainz (JGU) and senior author of the study.

Results may provide hints to the matter/antimatter enigma

The consequences of this theoretical work are potentially far-reaching. For future technologies, the study suggests that antiskyrmions could be a ready source of skyrmions, which would be crucial for any application that uses skyrmions to transmit and store information. Moreover, the onset of trochoidal motion sets the ultimate speed limit of such topological charges, which is an important parameter in designing any future circuits using skyrmions.

More fundamentally, the work may provide hints for solving a bigger mystery on cosmological scales, namely, why there is more matter than antimatter in the observable universe. Because of the asymmetry in the motion of skyrmion and antiskyrmions, the simulations show that there is always an excess of skyrmions after pair creation, so the imbalance between "matter" and "antimatter" in these ferromagnetic films is a natural consequence of their dynamics at high energies. "In the nanoscale magnetic universe, at least, matter can arise naturally from a single antiparticle seed," Dupé said.

Matter and antimatter in the nanoscale magnetic universe: a gas of skyrmions (purple) and antiskyrmions (green) generated from the trochoidal dynamics of a single antiskyrmion seed.
Ill./©: Joo-Von Kim

Wissenschaftliche Ansprechpartner:

Dr. Ulrike Ritzmann
Department for Physics and Astronomy
Uppsala University
751 20 Uppsala, SWEDEN

Dr. Bertrand Dupé
Institut of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone + 49 6131 39-25921


Ulrike Ritzmann et al., Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin-orbit torques, Nature Electronics, 13 August 2018,
DOI: 10.1038/s41928-018-0114-0

Weitere Informationen: – Interdisciplinary Spintronics Research Group (INSPIRE) – Spin Phenomena Interdisciplinary Center (SPICE) – "Antiferromagnetic materials allow for processing at terahertz speeds" (24 May 2018) – "Mainz University opens Spin Phenomena Interdisciplinary Center to accelerate spin research" (22 April 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

Science & Research
Overview of more VideoLinks >>>