Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LMU Computer Scientists Involved in Galileo Research: Project launched for indoor navigation

15.12.2008
Now that navigation systems are here to stay, we can hardly imagine life without them. Aside from private use for getting about on roads, they play an essential role in air and ocean traffic, and even in rail transport for guiding and monitoring trains.

With its Galileo navigation system, the European Union intends to become independent of America’s GPS (Global Positioning System). Now the Mobile and Distributed Systems Group of Ludwig-Maximilians-Universität (LMU), München, is also involved in developing Galileo services.

The Federal Ministry of Education and Research recently approved the two-year project “Indoor”, which will run until the end of 2010. In this project, LMU computer scientists working with Professor Claudia Linnhoff-Popien shall be developing positioning and navigation technologies to be used in the field of traffic logistics and for emergency services. What they are focusing on in particular is indoor positioning and navigation.

The project aims at a fundamentally new development: Solutions so far have relied on the terminal device periodically sending position data to a server, even when the user, and therefore the terminal, is not moving at all. The LMU computer scientists, on the other hand, assign boundary circles to the users according to given queries and the movement of the persons or objects being monitored. The terminal only gets in touch with the server if the user moves beyond his circle. This method is more effective and economical, since the position data is only sent to the server when there is movement, and costs are only incurred at that moment.

This technology so far works best with GPS-supported terminals – and it will now be exciting to see how the new challenges of a Galileo module and the addition of indoor positioning will be met. As it is, the crux of the problem with large buildings is the given architecture and furnishing, both of which can lead to all kinds of wild shadowing effects and reflections. The present technology goes back to research done in the Mobile and Distributed Systems Group, which has been being published in prestigious international journals over the past five years, and which has led to numerous dissertations, one habilitation and a number of patent applications.

The aim of the “Indoor” project is to improve certain algorithms that will increase the energy and cost efficiency of location-based service applications. Localization algorithms for indoor applications shall be enhanced, existing platforms and concepts technically evaluated, and a user study conducted.

The scientists have daunting challenges ahead as they forge on with the project, since precise localization inside a large building is considerably more difficult to achieve than outdoors. Aside from the technical difficulty of achieving this, there is one nasty problem that stands in their way: the “semantics” of buildings. There is no way of knowing from a public building’s floor plan alone, for example, whether a door drawn on the plan is actually accessible to every public person, or whether it is perhaps only accessible to certain staff or to certain groups of people.

Together with a spin-off of the Mobile and Distributed Systems Group, Aloqa GmbH Munich, and a hardware developer for satellite navigation systems, Ifen GmbH Poing, a prototype shall be developed during the project, which shall implement the methods developed at the group as a tangible hardware module. And there is one more partner who will be involved in the testing phase: the Walt Disney Company, Germany. Disney is namely interested in this budding technology because it could be just what they need for their theme parks.

The introduction of Galileo will mark the independence of the European Union from America’s GPS (Global Positioning System) and the Russian Federation’s global navigation satellite system GLONASS. While Galileo, a joint project of the EU and the ESA (European Space Agency), is compatible with GPS, it guarantees independent and reliable availability in Europe.

Contact:
Prof. Dr. Claudia Linnhoff-Popien
Mobile and Distributed Systems Group
Department of Computer Science at LMU Munich
Tel.: ++49 (0) 89 / 2180-9149
E-Mail: linnhoff@ifi.lmu.de

Kathrin Bilgeri | alfa
Further information:
http://www.en.uni-muenchen.de/news/research/index.html

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>