Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light: Information's new friend

10.06.2016

African researchers demonstrate a 100x increase in the amount of information that can be 'packed into light'

The rise of big data and advances in information technology has serious implications for our ability to deliver sufficient bandwidth to meet the growing demand.


Data of the Rubik's cube sent and received.

Credit: Wits University

Researchers at the University of the Witwatersrand in Johannesburg, South Africa, and the Council for Scientific and Industrial Research (CSIR) are looking at alternative sources that will be able to take over where traditional optical communications systems are likely to fail in future.

In their latest research, published online today (10 June 2016) in the scientific journal, Scientific Reports, the team from South Africa and Tunisia demonstrate over 100 patterns of light used in an optical communication link, potentially increasing the bandwidth of communication systems by 100 times.

The work is freely available online at http://www.nature.com/articles/srep27674 [This link will only be available once the paper is published online.]

The idea was conceived by Professor Andrew Forbes from Wits University, who led the collaboration. The key experiment was performed by Dr Carmelo Rosales-Guzman, a Research Fellow in the Structured Light group in the Wits School of Physics, and Dr Angela Dudley of the CSIR, an honorary academic at Wits.

The first experiments on the topic were carried out by Abderrahmen Trichili of Sup'Com (Tunisia) as a visiting student to South Africa as part of an African Laser Centre funded research project. The other team members included Bienvenu Ndagano (Wits), Dr Amine Ben Salem (Sup'Com) and Professor Mourad Zghal (Sup'Com), all of who contributed significantly to the work.

Bracing for the bandwidth ceiling

Traditional optical communication systems modulate the amplitude, phase, polarisation, colour and frequency of the light that is transmitted. Yet despite these technologies, we are predicted to reach a bandwidth ceiling in the near future.

But light also has a "pattern" - the intensity distribution of the light, that is, how it looks on a camera or a screen.

Since these patterns are unique, they can be used to encode information:

  • pattern 1 = channel 1 or the letter A,
  • pattern 2 = channel 2 or the letter B, and so on.

     

What does this mean?

That future bandwidth can be increased by precisely the number of patterns of light we are able to use.

Ten patterns mean a 10x increase in existing bandwidth, as 10 new channels would emerge for data transfer.

At the moment modern optical communication systems only use one pattern. This is due to technical hurdles in how to pack information into these patterns of light, and how to get the information back out again.

How the research was done

In this latest work, the team showed data transmission with over 100 patterns of light, exploiting three degrees of freedom in the process.

They used digital holograms written to a small liquid crystal display (LCD) and showed that it is possible to have a hologram encoded with over 100 patterns in multiple colours.

"This is the highest number of patterns created and detected on such a device to date, far exceeding the previous state-of-the-art," says Forbes.

One of the novel steps was to make the device 'colour blind', so the same holograms can be used to encode many wavelengths.

According to Rosales-Guzman to make this work "100 holograms were combined into a single, complex hologram. Moreover, each sub-hologram was individually tailored to correct for any optical aberrations due to the colour difference, angular offset and so on".

What's next?

The next stage is to move out of the laboratory and demonstrate the technology in a real-world system.

"We are presently working with a commercial entity to test in just such an environment," says Forbes. The approach of the team could be used in both free-space and optical fibre networks.

###

Further information:

Project support

This project was supported by the African Laser Centre, a virtual centre funded by the South African Department of Science and Technology (DST) to support research collaborations between African countries in the field of photonics.

Paper abstract

Title: Optical communication beyond orbital angular momentum
Abderrahmen Trichili, Carmelo Rosales-Guzmán, Angela Dudley, Bienvenu Ndagano, Amine Ben Salem, Mourad Zghal and Andrew Forbes
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing of over 100 modes using the radial and azimuthal degrees of freedom. By creating wavelength independent holograms we are able to demonstrate this technique on a spatial light modulator. Our results offer a route to higher bit rates for next generation optical networks.

Multimedia pack: Download images, video from Dropbox via this link: http://bit.ly/1Ybtj0X

Media interviews:
Professor Andrew Forbes
School of Physics
University of the Witwatersrand, Johannesburg
+27 82 823 1836
andrew.forbes@wits.ac.za

Media Contact

Erna van Wyk
erna.vanwyk@wits.ac.za
27-117-174-023

 @Wits_News

http://www.wits.ac.za 

Erna van Wyk | EurekAlert!

More articles from Information Technology:

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht A burst of ”synchronous” light
08.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>