Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumpstarting computers with 3-D chips

25.01.2012
Integrated circuits in multiple layers are readily made and tested in EPFL lab

EPFL scientist are among the leaders in the race to develop an industry-ready prototype of a 3D chip as well as a high-performance and reliable manufacturing method.


The chip is composed of three or more processors that are stacked vertically and connected together -- resulting in increased speed and multitasking, more memory and calculating power, better functionality and wireless connectivity. Credit: EPFL / Alain Herzog

The chip is composed of three or more processors that are stacked vertically and connected together—resulting in increased speed and multitasking, more memory and calculating power, better functionality and wireless connectivity.

Developed at the Microelectronics Systems Laboratory (LSM), Director Yusuf Leblebici is unveiling these results to experts on Wednesday the 25th of January in Paris, in a keynote presentation at the 2012 Interconnection Network Architectures Workshop.

"It's the logical next step in electronics development, because it allows a large increase in terms of efficiency," says Leblebici.
Up to this point, chips could only be assembled horizontally via connections along their edges. Here, they are connected vertically by several hundred very thin copper microtubes. These wires pass through tiny openings, called Through-Silicon-Vias (TSV), made in the core of the silicon layer of each chip.

"This superposition reduces the distance between circuits, and thus considerably improves the speed of data exchange," explains LSM researcher Yuksel Temiz, who is doing his PhD thesis on the subject.

To reach this result, the team had to overcome a number of difficulties, such as the fragility of the copper connections and supports which, because they are miniaturized to such an extreme degree (about 50 micrometers in thickness), are as thin as a human hair. "In three years of work, we made and tested thousands of TSV connections, and had more than 900 functioning simultaneously," says Leblebici. "Now we have a production process that is really efficient." He adds that the laboratory has also manufactured 3D multi-core processors, connected by a TSV network.

This technology will initially be made available to a number of academic research teams for further development, before being commercialized.


VIDEO: http://www.youtube.com/watch?v=x3z-O8rrQis
Contacts:
Yusuf Leblebici, yusuf.leblebici@epfl.ch,
tel. +41 21 693 69 51 or +41 21 693 69 55
Yuksel Temiz, yuksel.temiz@epfl.ch,
tel. +41 21 693 69 28 or +41 78 878 62 99

Sarah Perrin | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>