Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intuitive in the virtual reality: International research team develops bimodal “electronic skin”

29.10.2019

Through the crafty use of magnetic fields, scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the Johannes Kepler University in Linz have developed the first electronic sensor that can simultaneously process both touchless and tactile stimuli.

Prior attempts have so far failed to combine these functions on a single device due to overlapping signals of the various stimuli. As the sensor is readily applied to the human skin, it could provide a seamless interactive platform for virtual and augmented reality scenarios.


An international research team has developed an electronic sensor, which can process touchless as well as tactile signals. This “electronic skin” could provide a better interface between humans and machines.

Foto: HZDR / D. Makarov

The researchers have published their results in the scientific journal Nature Communications (DOI: 10.1038/s41467-019-12303-5).

The largest human organ – the skin – is likely the most functionally versatile part of the body. It is not only able to differentiate between the most varied stimuli within seconds, but it can also classify the intensity of signals over a broad range.

A research team led by Dr. Denys Makarov from HZDR’s Institute of Ion Beam Physics and Materials Research as well the Soft Electronics Laboratory led by Prof. Martin Kaltenbrunner at Linz University have managed to produce an electronic counterpart with similar characteristics.

According to the scientists, their new sensor could massively simplify the interplay between humans and machines, as Denys Makarov explains: “Applications in virtual reality are becoming increasingly more complex. We therefore need devices which can process and discriminate multiple interaction modes.”

The current systems, however, work either by only registering physical touch or by tracking objects in a touchless manner. Both interaction pathways have now been combined for the first time on the sensor, which has been termed a “magnetic microelectromechanical system” (m-MEMS) by the scientists.

“Our sensor processes the electrical signals of the touchless and the tactile interactions in different regions,” says the publication’s first author Dr. Jin Ge from HZDR, adding, “and in this way, it can differentiate the stimuli’s origin in real time and suppress disturbing influences from other sources.” The foundation for this work is the unusual design the scientists worked out.

Flexibility on all surfaces

On a thin polymer film, they first fabricated a magnetic sensor, which relies on what is known as the Giant Magneto Resistance (GMR). This film in turn was sealed by a silicon-based polymer layer (polydimethylsiloxane) containing a round cavity designed to be precisely aligned with the sensor. Inside this void, the researchers integrated a flexible permanent magnet with pyramid-like tips protruding from its surface.

“The result is rather more reminiscent of cling film with optical embellishments,” comments Makarov. “But this is precisely one of our sensor’s strengths.” This is how it remains so exceptionally flexible: it fits all environments perfectly. Even under curved conditions, it works without losing its functionality. The sensor can thus very easily be placed, for example, on the fingertip.

It is precisely in this manner that the scientists tested their development. Jin Ge elaborates: “On the leaf of a daisy we attached a permanent magnet, whose magnetic field points in the opposite direction of the magnet attached to our platform.”

As the finger now approaches this external magnetic field, the electrical resistance of the GMR sensor changes: it drops. This occurs until the point when the finger actually touches the leaf. At this moment, it rises abruptly because the built-in permanent magnet is pressed closer to the GMR sensor and thus superimposes the external magnetic field.

“This is how our m-MEMS platform can register a clear shift from touchless to tactile interaction in seconds”, says Jin Ge.

Click instead of click, click, click

This allows the sensor to selectively control both physical and virtual objects, as one of the experiments conducted by the team demonstrates: on a glass plate with which they furnished a permanent magnet, the physicists projected virtual buttons that manipulate real conditions, such as the room temperature or brightness.

Using a finger on which the “electronic skin” had been applied, the scientists could first select the desired virtual function touchless through interaction with the permanent magnet.

As soon as the finger touched the plate, the m-MEMS platform switched automatically to the tactile interaction mode. Light or heavy pressure could then be used, for example, to lower or increase the room temperature accordingly.

The researchers cut down an activity that had previously required several interactions to merely one. “This may sound like a small step at first,” says Martin Kaltenbrunner. “In the long-term, however, a better interface between humans and machines can be built on this foundation.” This “electronic skin” – in addition to virtual reality spaces – could also be used, for example, in sterile environments. Surgeons could use the sensors to handle medical equipment without touching it during a procedure, which would reduce the danger of contamination.

Publication:

J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang, G.S. Canón Bermúdez, R. Illing, C. Wang, S. Zhou, J. Fassbender, M. Kaltenbrunner, D. Makarov: A bimodal soft electronic skin for tactile and touchless interaction in real time, in Nature Communications, 2019 (DOI: 10.1038/s41467-019-12303-5)

Further Information:

Dr. Denys Makarov
Institute of Ion Beam Physics and Materials Research at HZDR
Phone: +49 351 260-3273 | E-mail: d.makarov@hzdr.de

Media contact:

Simon Schmitt | Science editor
Phone: +49 351 260-3400 | E-mail: s.schmitt@hzdr.de

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf
Further information:
https://www.hzdr.de/db/Cms?pNid=99&pOid=59697

Further reports about: Beam HZDR external magnetic field magnetic field skin

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>