Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In first, 3-D printed objects connect to WiFi without electronics

06.12.2017

Imagine a bottle of laundry detergent that can sense when you're running low on soap -- and automatically connect to the internet to place an order for more.

University of Washington researchers are the first to make this a reality by 3-D printing plastic objects and sensors that can collect useful data and communicate with other WiFi-connected devices entirely on their own.


UW electrical engineers and computer scientists have developed the first 3-D printed plastic objects that can connect to other devices via WiFi without using any electronics.

Credit: University of Washington

With CAD models that the team is making available to the public, 3-D printing enthusiasts will be able to create objects out of commercially available plastics that can wirelessly communicate with other smart devices. That could include a battery-free slider that controls music volume, a button that automatically orders more cornflakes from Amazon or a water sensor that sends an alarm to your phone when it detects a leak.

"Our goal was to create something that just comes out of your 3-D printer at home and can send useful information to other devices," said co-lead author and UW electrical engineering doctoral student Vikram Iyer. "But the big challenge is how do you communicate wirelessly with WiFi using only plastic? That's something that no one has been able to do before."

The system is described in a paper presented Nov. 30 at the Association for Computing Machinery's SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia.

To 3-D print objects that can communicate with commercial WiFi receivers, the team employed backscatter techniques that allow devices to exchange information. In this case, the team replaced some functions normally performed by electrical components with mechanical motion activated by springs, gears, switches and other parts that can be 3-D printed -- borrowing from principles that allow battery-free watches to keep time.

Backscatter systems use an antenna to transmit data by reflecting radio signals emitted by a WiFi router or other device. Information embedded in those reflected patterns can be decoded by a WiFi receiver. In this case, the antenna is contained in a 3-D printed object made of conductive printing filament that mixes plastic with copper.

Physical motion -- pushing a button, laundry soap flowing out of a bottle, turning a knob, removing a hammer from a weighted tool bench -- triggers gears and springs elsewhere in the 3-D printed object that cause a conductive switch to intermittently connect or disconnect with the antenna and change its reflective state. Information -- in the form of 1s and 0s -- is encoded by the presence or absence of the tooth on a gear. Energy from a coiled spring drives the gear system, and the width and pattern of gear teeth control how long the backscatter switch makes contact with the antenna, creating patterns of reflected signals that can be decoded by a WiFi receiver.

"As you pour detergent out of a Tide bottle, for instance, the speed at which the gears are turning tells you how much soap is flowing out. The interaction between the 3-D printed switch and antenna wirelessly transmits that data," said senior author and Allen School associate professor Shyam Gollakota. "Then the receiver can track how much detergent you have left and when it dips below a certain amount, it can automatically send a message to your Amazon app to order more."

The team from the UW Networks & Mobile Systems Lab 3-D printed several different tools that were able to sense and send information successfully to other connected devices: a wind meter, a water flow meter and a scale. They also printed a flow meter that was used to track and order laundry soap, and a test tube holder that could be used for either managing inventory or measuring the amount of liquid in each test tube.

They also 3-D printed WiFi input widgets such as buttons, knobs and sliders that can be customized to communicate with other smart devices in the home and enable a rich ecosystem of "talking objects" that can seamlessly sense and interact with their surroundings.

Using a different type of 3-D printing filament that combines plastic with iron, the team also leveraged magnetic properties to invisibly encode static information in 3-D printed objects -- which could range from barcode identification for inventory purposes or information about the object that tells a robot how to interact with it.

"It looks like a regular 3-D printed object but there's invisible information inside that can be read with your smartphone," said Allen School doctoral student and co-lead author Justin Chan.

###

The research was funded by the National Science Foundation, the Alfred P. Sloan Fellowship and Google.

For more information, contact printedwifi@cs.washington.edu.

Media Contact

Jennifer Langston
jlangst@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Jennifer Langston | EurekAlert!

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>