Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved method developed to locate ships in storms

02.03.2011
There are already systems that detect ships at sea, but a group of engineers from the UAH, led by the researcher Raúl Vicen, has introduced a new development, involving "the use of artificial intelligence techniques and improvements in the templates used to select input data".

The team has come up with a new detection method "that outperforms the one that has generally been used until now, as well as offering the advantages of low computational costs, and which can also be used in real time".

The new system, the details of which are published in the journal IET Radar, Sonar & Navigation, involves firstly gathering information from radar data using a series of templates designed by the scientists. This phase makes use of regular radar tracking data (both horizontal and vertical), as well as other more advanced modes (diagonal).

An artificial neural network architecture called a "multilayer perceptron" that is capable of learning from its environment, is then used. This makes it possible to differentiate between ships and waves in the confused radar images seen during storms.

Test passed in the North Sea

The technique has been successfully trialled using data from an X-band sea radar system (the most common in these kinds of devices, with frequencies of between 7 and 12.5 gigahertz), located on the German FINO-1 research platform in the North Sea.

"The fact that we obtained results with real data shows that this method can be installed in ship and ocean platform radar systems, without any problem", the authors explain.

According to the study, this system offers "substantial" improvements in comparison with the conventional systems used for detecting ships, such as the CA-CFAR technique (Cell Averaging-Constant False Alarm Rate). Radar systems usually use these algorithms to detect targets among the waves, or 'sea clutter', but the proposed system "outperforms the current systems in terms of its detection rates".

References: R. Vicen-Bueno R., Carrasco-Álvarez M.P., Jarabo-Amores J.C., Nieto-Borge y M. Rosa-Zurera. "Ship detection by different data selection templates and multilayer perceptrons from incoherent maritime radar data". IET Radar, Sonar & Navigation 5(2): 144-154, February 2011. DOI: 10.1049/iet-rsn.2010.0001

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>