Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging of exotic quantum particles as building blocks for quantum computing

30.07.2019

A step closer to quantum computing

Researchers at the University of Illinois at Chicago, in collaboration with their colleagues at the University of Hamburg in Germany, have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers. Their findings are reported in the journal Science Advances.


A. A monolayer of iron atoms assembled on a rhenium surface. B. Image of a Majorana fermion as a bright line along the edge of the iron using a scanning tunneling microscope.

Credit: UIC/Dirk Morr

More than 50 years ago, Gordon Moore, the former CEO of Intel, observed that the number of transistors on a computer chip doubles every 18 to 24 months. This trend, now known as Moore's Law, has continued to the present day, leading to transistors that are only a few nanometers -- one-billionth of a meter -- in size.

At this scale, the classical laws of physics, which form the basis on which our current computers work, cease to function, and they are replaced by the laws of quantum mechanics. Making transistors even smaller, which has been used in the past to increase computing speed and data storage, is, therefore, no longer possible.

Unless researchers can figure out how to use quantum mechanics as the new foundation for the next generation of computers.

This was the basic idea formulated in 1982 by Richard Feynman, one of the most influential theoretical physicists of the 20th century. Rather than using classical computer bits that store information encoded in zeros and ones, one would devise "quantum bits" -- or qubits for short -- that would utilize the laws of quantum mechanics to store any number between 0 and 1, thereby exponentially increasing computing speed and leading to the birth of quantum computers.

"Usually, when you drop your cell phone, it doesn't erase the information on your phone," said Dirk Morr, professor of physics at UIC and corresponding author on the paper. "That's because the chips on which information is stored in bits of ones and zeros are fairly stable. It takes a lot of messing around to turn a one into a zero and vice versa. In quantum computers, however, because there is an infinite number of possible states for the qubit to be in, information can get lost much more easily."

To form more robust and reliable qubits, researchers have turned to Majorana fermions -- quantum particles that occur only in pairs.

"We only need one Majorana fermion per qubit, and so we have to separate them from each other," Morr said.

By building qubits from a pair of Majorana fermions, information can be reliably encoded, as long as the Majoranas remain sufficiently far apart.

To achieve this separation, and to "image" a single Majorana fermion, it is necessary to create a "topological superconductor" -- a system that can conduct currents without any energy losses, and at the same time, is tied into a "topological knot."

"This topological knot is similar to the hole in a donut: you can deform the donut into a coffee mug without losing the hole, but if you want to destroy the hole, you have to do something pretty dramatic, such as eating the donut," Morr said.

To build topological superconductors, Morr's colleagues at the University of Hamburg placed an island of magnetic iron atoms, only tens of nanometers in diameter, on the surface of rhenium, a superconductor. Morr's group had predicted that by using a scanning tunneling microscope, one should be able to image a Majorana fermion as a bright line along the edge of the island of iron atoms. And this is exactly what the experimental group observed.

"Being able to actually visualize these exotic quantum particles takes us another step closer to building robust qubits, and ultimately quantum computers," Morr said. "The next step will be to figure out how we can quantum engineer these Majorana qubits on quantum chips and manipulate them to obtain an exponential increase in our computing power. This will allow us to address many problems we face today, from fighting global warming and forecasting earthquakes to alleviating traffic congestion through driverless cars and creating a more reliable energy grid."

###

Eric Mascot and Sagen Cocklin of the University of Illinois at Chicago; Alexandra Palacio-Morales, Howon Kim and Roland Wiesendanger of the University of Hamburg and Stephan Rachel of the University of Melbourne are co-authors on the paper.

This work was supported by the European Research Council Advanced Grant ASTONISH (project no. 338802) and ADMIRE (project no. 786020); the Alexander von Humboldt Foundation; the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-FG02-05ER46225; and the Australian Research Council (FT180100211).

Media Contact

Jackie Carey
jmcarey@uic.edu
312-996-8277

 @uicnews

http://www.uic.edu 

Jackie Carey | EurekAlert!
Further information:
https://today.uic.edu/imaging-of-exotic-quantum-particles-as-building-blocks-for-quantum-computing
http://dx.doi.org/10.1126/sciadv.aav6600

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>