Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging of exotic quantum particles as building blocks for quantum computing

30.07.2019

A step closer to quantum computing

Researchers at the University of Illinois at Chicago, in collaboration with their colleagues at the University of Hamburg in Germany, have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers. Their findings are reported in the journal Science Advances.


A. A monolayer of iron atoms assembled on a rhenium surface. B. Image of a Majorana fermion as a bright line along the edge of the iron using a scanning tunneling microscope.

Credit: UIC/Dirk Morr

More than 50 years ago, Gordon Moore, the former CEO of Intel, observed that the number of transistors on a computer chip doubles every 18 to 24 months. This trend, now known as Moore's Law, has continued to the present day, leading to transistors that are only a few nanometers -- one-billionth of a meter -- in size.

At this scale, the classical laws of physics, which form the basis on which our current computers work, cease to function, and they are replaced by the laws of quantum mechanics. Making transistors even smaller, which has been used in the past to increase computing speed and data storage, is, therefore, no longer possible.

Unless researchers can figure out how to use quantum mechanics as the new foundation for the next generation of computers.

This was the basic idea formulated in 1982 by Richard Feynman, one of the most influential theoretical physicists of the 20th century. Rather than using classical computer bits that store information encoded in zeros and ones, one would devise "quantum bits" -- or qubits for short -- that would utilize the laws of quantum mechanics to store any number between 0 and 1, thereby exponentially increasing computing speed and leading to the birth of quantum computers.

"Usually, when you drop your cell phone, it doesn't erase the information on your phone," said Dirk Morr, professor of physics at UIC and corresponding author on the paper. "That's because the chips on which information is stored in bits of ones and zeros are fairly stable. It takes a lot of messing around to turn a one into a zero and vice versa. In quantum computers, however, because there is an infinite number of possible states for the qubit to be in, information can get lost much more easily."

To form more robust and reliable qubits, researchers have turned to Majorana fermions -- quantum particles that occur only in pairs.

"We only need one Majorana fermion per qubit, and so we have to separate them from each other," Morr said.

By building qubits from a pair of Majorana fermions, information can be reliably encoded, as long as the Majoranas remain sufficiently far apart.

To achieve this separation, and to "image" a single Majorana fermion, it is necessary to create a "topological superconductor" -- a system that can conduct currents without any energy losses, and at the same time, is tied into a "topological knot."

"This topological knot is similar to the hole in a donut: you can deform the donut into a coffee mug without losing the hole, but if you want to destroy the hole, you have to do something pretty dramatic, such as eating the donut," Morr said.

To build topological superconductors, Morr's colleagues at the University of Hamburg placed an island of magnetic iron atoms, only tens of nanometers in diameter, on the surface of rhenium, a superconductor. Morr's group had predicted that by using a scanning tunneling microscope, one should be able to image a Majorana fermion as a bright line along the edge of the island of iron atoms. And this is exactly what the experimental group observed.

"Being able to actually visualize these exotic quantum particles takes us another step closer to building robust qubits, and ultimately quantum computers," Morr said. "The next step will be to figure out how we can quantum engineer these Majorana qubits on quantum chips and manipulate them to obtain an exponential increase in our computing power. This will allow us to address many problems we face today, from fighting global warming and forecasting earthquakes to alleviating traffic congestion through driverless cars and creating a more reliable energy grid."

###

Eric Mascot and Sagen Cocklin of the University of Illinois at Chicago; Alexandra Palacio-Morales, Howon Kim and Roland Wiesendanger of the University of Hamburg and Stephan Rachel of the University of Melbourne are co-authors on the paper.

This work was supported by the European Research Council Advanced Grant ASTONISH (project no. 338802) and ADMIRE (project no. 786020); the Alexander von Humboldt Foundation; the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-FG02-05ER46225; and the Australian Research Council (FT180100211).

Media Contact

Jackie Carey
jmcarey@uic.edu
312-996-8277

 @uicnews

http://www.uic.edu 

Jackie Carey | EurekAlert!
Further information:
https://today.uic.edu/imaging-of-exotic-quantum-particles-as-building-blocks-for-quantum-computing
http://dx.doi.org/10.1126/sciadv.aav6600

More articles from Information Technology:

nachricht 5G is smartening up production
23.08.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Software for diagnostics and fail-safe operation of robots developed at FEFU
23.08.2019 | Far Eastern Federal University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>