Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Artificial Intelligence Detects Rare Diseases

06.06.2019

Every year, around half a million children worldwide are born with a rare hereditary disease. Obtaining a definitive diagnosis can be difficult and time consuming. In a study of 679 patients with 105 different rare diseases, scientists from the University of Bonn and the Charité - Universitätsmedizin Berlin have shown that artificial intelligence can be used to diagnose rare diseases more efficiently and reliably. A neural network automatically combines portrait photos with genetic and patient data. The results are now presented in the journal "Genetics in Medicine".

Many patients with rare diseases go through lengthy trials and tribulations until they are correctly diagnosed. "This results in a loss of valuable time that is actually needed for early therapy in order to avert progressive damage," explains Prof. Dr. med. Dipl. Phys. Peter Krawitz from the Institute for Genomic Statistics and Bioinformatics at the University Hospital Bonn (UKB).


With artificial intelligence to a diagnosis of rare hereditary diseases: The neural network combines data from portrait images with gene and patient data.

© Foto: Tori Pantel

Together with an international team of researchers, he demonstrates how artificial intelligence can be used to make comparatively quick and reliable diagnoses in facial analysis.

The researchers used data of 679 patients with 105 different diseases caused by the change in a single gene. These include, for example, mucopolysaccharidosis (MPS), which leads to bone deformation, learning difficulties and stunted growth. Mabry syndrome also results in intellectual disability.

All these diseases have in common that the facial features of those affected show abnormalities. This is particularly characteristic, for example, of Kabuki syndrome, which is reminiscent of the make-up of a traditional Japanese form of theatre. The eyebrows are arched, the eye-distance is wide and the spaces between the eyelids are long.

The used software can automatically detect these characteristic features from a photo. Together with the clinical symptoms of the patients and genetic data, it is possible to calculate with high accuracy which disease is most likely to be involved. The AI and digital health company FDNA has developed the neural network DeepGestalt, which the researchers use as a tool of artificial intelligence for their study.

"PEDIA is a unique example of next-generation phenotyping technologies," said Dekel Gelbman, CEO of FDNA. "Integrating an advanced AI and facial analysis framework such as DeepGestalt into the variant analysis workflow will result in a new paradigm for superior genetic testing".

Researchers train the neural network with 30,000 images

The scientists trained this computer program with around 30,000 portrait pictures of people affected by rare syndromal diseases. "In combination with facial analysis, it is possible to filter out the decisive genetic factors and prioritize genes," says Krawitz. "Merging data in the neuronal network reduces data analysis time and leads to a higher rate of diagnosis.”

The head of the Institute of Genomic Statistics and Bioinformatics at the UKB has been working with FDNA for some time. "This is of great scientific interest to us and also enables us to find a cause in some unsolved cases," said Krawitz. Many patients are currently still looking for an explanation for their symptoms.

The study is a team effort between computer science and medicine. This can also be seen in the shared first authorship of the computer scientist Tzung-Chien Hsieh, doctoral student at the institute of Professor Krawitz, and Dr. Martin Atta Mensah, physician at the Institute of Medical Genetics and Human Genetics of the Charité and Fellow of the Clinician Scientist Program of the Charité and Berlin Institute of Health (BIH).

Prof. Dr. Stefan Mundlos, Director of the Institute of Medical Genetics and Human Genetics at the Charité, also participated in the study, as did over 90 other scientists.

"Patients want a prompt and accurate diagnosis. Artificial intelligence supports physicians and scientists in shortening the journey," says Dr. Christine Mundlos, Deputy Managing Director of the alliance of patients with chronic rare diseases (ACHSE) e.V. "This also improves the quality of life of those affected to some extent."

Results will be presented at international conference

The scientists will present their study at the conference of the European Society of Human Genetics (ESHG) from 15 to 18 June in Gothenburg (Sweden). FDNA will also be present at the conference.

Wissenschaftliche Ansprechpartner:

Prof. Dr. med. Dipl. Phys. Peter Krawitz
Institute for Genomic Statistics and Bioinformatics
University Hospital Bonn
Phone 0228/28714799
E-mail: pkrawitz@uni-bonn.de

Originalpublikation:

PEDIA: Priorization of Exome Data by Image Analysis, Genetics in Medicine, DOI: https://www.nature.com/articles/s41436-019-0566-2

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
14.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>