Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Artificial Intelligence Detects Rare Diseases

06.06.2019

Every year, around half a million children worldwide are born with a rare hereditary disease. Obtaining a definitive diagnosis can be difficult and time consuming. In a study of 679 patients with 105 different rare diseases, scientists from the University of Bonn and the Charité - Universitätsmedizin Berlin have shown that artificial intelligence can be used to diagnose rare diseases more efficiently and reliably. A neural network automatically combines portrait photos with genetic and patient data. The results are now presented in the journal "Genetics in Medicine".

Many patients with rare diseases go through lengthy trials and tribulations until they are correctly diagnosed. "This results in a loss of valuable time that is actually needed for early therapy in order to avert progressive damage," explains Prof. Dr. med. Dipl. Phys. Peter Krawitz from the Institute for Genomic Statistics and Bioinformatics at the University Hospital Bonn (UKB).


With artificial intelligence to a diagnosis of rare hereditary diseases: The neural network combines data from portrait images with gene and patient data.

© Foto: Tori Pantel

Together with an international team of researchers, he demonstrates how artificial intelligence can be used to make comparatively quick and reliable diagnoses in facial analysis.

The researchers used data of 679 patients with 105 different diseases caused by the change in a single gene. These include, for example, mucopolysaccharidosis (MPS), which leads to bone deformation, learning difficulties and stunted growth. Mabry syndrome also results in intellectual disability.

All these diseases have in common that the facial features of those affected show abnormalities. This is particularly characteristic, for example, of Kabuki syndrome, which is reminiscent of the make-up of a traditional Japanese form of theatre. The eyebrows are arched, the eye-distance is wide and the spaces between the eyelids are long.

The used software can automatically detect these characteristic features from a photo. Together with the clinical symptoms of the patients and genetic data, it is possible to calculate with high accuracy which disease is most likely to be involved. The AI and digital health company FDNA has developed the neural network DeepGestalt, which the researchers use as a tool of artificial intelligence for their study.

"PEDIA is a unique example of next-generation phenotyping technologies," said Dekel Gelbman, CEO of FDNA. "Integrating an advanced AI and facial analysis framework such as DeepGestalt into the variant analysis workflow will result in a new paradigm for superior genetic testing".

Researchers train the neural network with 30,000 images

The scientists trained this computer program with around 30,000 portrait pictures of people affected by rare syndromal diseases. "In combination with facial analysis, it is possible to filter out the decisive genetic factors and prioritize genes," says Krawitz. "Merging data in the neuronal network reduces data analysis time and leads to a higher rate of diagnosis.”

The head of the Institute of Genomic Statistics and Bioinformatics at the UKB has been working with FDNA for some time. "This is of great scientific interest to us and also enables us to find a cause in some unsolved cases," said Krawitz. Many patients are currently still looking for an explanation for their symptoms.

The study is a team effort between computer science and medicine. This can also be seen in the shared first authorship of the computer scientist Tzung-Chien Hsieh, doctoral student at the institute of Professor Krawitz, and Dr. Martin Atta Mensah, physician at the Institute of Medical Genetics and Human Genetics of the Charité and Fellow of the Clinician Scientist Program of the Charité and Berlin Institute of Health (BIH).

Prof. Dr. Stefan Mundlos, Director of the Institute of Medical Genetics and Human Genetics at the Charité, also participated in the study, as did over 90 other scientists.

"Patients want a prompt and accurate diagnosis. Artificial intelligence supports physicians and scientists in shortening the journey," says Dr. Christine Mundlos, Deputy Managing Director of the alliance of patients with chronic rare diseases (ACHSE) e.V. "This also improves the quality of life of those affected to some extent."

Results will be presented at international conference

The scientists will present their study at the conference of the European Society of Human Genetics (ESHG) from 15 to 18 June in Gothenburg (Sweden). FDNA will also be present at the conference.

Wissenschaftliche Ansprechpartner:

Prof. Dr. med. Dipl. Phys. Peter Krawitz
Institute for Genomic Statistics and Bioinformatics
University Hospital Bonn
Phone 0228/28714799
E-mail: pkrawitz@uni-bonn.de

Originalpublikation:

PEDIA: Priorization of Exome Data by Image Analysis, Genetics in Medicine, DOI: https://www.nature.com/articles/s41436-019-0566-2

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Information Technology:

nachricht Tracking security staff at large-scale events
04.06.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Vulnerability of cloud service hardware uncovered
03.06.2019 | Karlsruher Institut für Technologie (KIT)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

Im Focus: 2D crystals conforming to 3D curves create strain for engineering quantum devices

A team led by scientists at the Department of Energy's Oak Ridge National Laboratory explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the crystals. The findings, published in Science Advances, point to a strategy for engineering strain directly during the growth of atomically thin crystals to fabricate single photon emitters for quantum information processing.

The team first explored growth of the flat crystals on substrates patterned with sharp steps and trenches. Surprisingly, the crystals conformally grew up and...

Im Focus: Experiments and calculations allow examination of boron's complicated dance

Work opens a path to precise calculations of the structure of other nuclei.

In a study that combines experimental work and theoretical calculations made possible by supercomputers, scientists have determined the nuclear geometry of two...

Im Focus: Fraunhofer HHI and IAF demonstrate the first wireless real-time video transmission using Terahertz

The Fraunhofer Heinrich Hertz Institute HHI develops next-generation wireless transmission systems (Beyond 5G) based on Terahertz (THz) technologies. The THz technology supports significantly higher data transmission rates than current 4G and 5G mobile wireless technologies. Researchers of the department Photonic Networks and Systems, in collaboration with the Fraunhofer Institute for Applied Solid State Physics IAF, have succeeded in transmitting a 4K video in real-time over a wireless THz link. This was the first time this technology was successfully realized in a real-time experiment. A wireless transmission capacity of 100 Gbit/s was demonstrated over the THz link.

Requirements placed on transmission capacities in communication networks are continuously growing, driven by new applications such as Industry 4.0, autonomous...

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Magnetism discovered in the Earth’s mantle

06.06.2019 | Earth Sciences

Snout dated: Slow-evolving elephant shark offers new insights into human physiology

06.06.2019 | Life Sciences

Biomarker predicts which pancreatic cysts may become cancerous

06.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>