Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot, sunny days could slow 5G networks, but research offers solutions

01.12.2017

Hot, sunny weather could degrade future fifth-generation or "5G" cellular transmissions by more than 15% -- which could mean more dropped calls in places like Florida and the Middle East -- but an Embry-Riddle Aeronautical University engineer says research will guide solutions.

Forthcoming 5G cellular systems could support applications requiring ultra-fast processing speeds by tapping into super-high frequency radio waves, which would offer 10 to 100 times more computing space than today's 4G cellular systems.


Future 5G cellular systems, including backhaul links and device-to-device connections, could be affected by solar ray emissions, Embry-Riddle research suggests.

Credit: Ahmed Sulyman/Embry-Riddle Aeronautical University

But, how would bright sunshine affect such high-speed transmissions?

To answer this question, Ahmed Sulyman, an associate professor in Embry-Riddle's Prescott, Ariz.-based Department of Computer, Electrical, & Software Engineering, teamed up with colleagues in Saudi Arabia to publish the first comprehensive analysis of solar radio emissions on land-based wireless communications systems at 60 Gigahertz (GHz) bands.

Sulyman's study appears in a special edition of the peer-reviewed journal IEEE Transactions on Antennas and Propagation (Volume: 65, Issue 12, Dec. 2017, pp. 6624-6635).

The conclusion? Future 5G cellular systems using 60 GHz bands might work better at night because solar radio emissions seem to degrade such transmissions. "This suggests there could be more dropped calls and lost data transmission, and the data rate could be lower during the day compared to nighttime," said Sulyman.

He added, however, that effective communication links at 60 GHz are possible at distances up to 134 meters indoors, and up to 110 meters outdoors, even in hilly, dense urban areas -- particularly if antennas are pointed toward each other.

"Engineers can always work around problems if they understand them properly," said Sulyman, a Senior Member of IEEE, the world's largest technical professional organization. "Once we understand the exact nature of solar radio interference on 5G networks, we can plan for it by optimizing links for day-time and night-time operations."

He noted that satellite televisions work well during the day and at night because planners offset any transmission degradation so seamlessly that consumers never know the difference. Similarly, he said, continuing studies of how bright sunshine affects 5G networks will help developers make better decisions to support those systems, too, he said: "These results will help 5G cellular network planners to prepare appropriate link budgets when deploying 60 GHz radio outdoors in extremely hot and sunny weather."

First-generation cellular systems were introduced in 1982, and each subsequent generation of the technology has tended to require about 10 years of development. Rollout of 5G wireless digital systems could happen in the 2020s or sooner, Sulyman said. New 5G standards should be developed in 2019, during the World Radiocommunication Conference.

If 5G systems could make use of extremely high-frequency radio waves -- characterized by millimeter-length bands (30- to 300 GHz) -- users would benefit from much faster data-access speeds and "nomadic" service that functions much like Wi-Fi, untethered from transmission towers.

As a cost-saving measure, telecommunications developers have been looking at transmissions in the unlicensed 5 GHz and 60 GHz bands. Transmissions in this range would provide cellular operators with an appealing business option in areas not profitable enough to justify more expensive licensed bands.

Currently, most 4G LTE networks make it possible to download a full-length high-definition movie in about five to ten minutes. Future 5G technology would offer much higher speeds. But there could be drawbacks to using higher-frequency radio waves, which have shorter transmission ranges shorter transmission ranges that can be blocked by buildings and weakened by atmospheric conditions.

For his study, Sulyman and colleagues looked at how solar radio emissions would affect 60 GHz communication, in various system configurations such as line-of-sight and non-line-of-sight setups. First they configured an indoor experiment in order to determine the "path loss exponent" or PLE - a measure of transmission degradation - resulting from solar radio emissions. Then, they compared those results with measurements gathered at two sunny outdoor locations in Riyadh city, Saudi Arabia - a hilly region with high-rise buildings and vegetation, and similar terrain with very little vegetation. In hot and sunny weather, PLE values increased by 9.0 to 15.6%, compared to measurements captured at night in cool, clear weather. In other words, the integrity of transmissions were negatively affected by strong sunshine.

Sulyman's journal article in IEEE Transactions on Antennas and Propagation, "Effectives of Solar Radio Emissions on Outdoor Propagation Path Loss Models at 60 GHz bands for Access/backhaul links and D2D communications," was co-authored by Hussein Seleem, Abdulmalik Alwarafy, Khaled Humadi and Abdulhameed Alsanie of King Saud University.

In June 2017, Sulyman published another paper in IEEE Wireless Communications, describing a novel architectural approach to bridging Internet-based "Internet of Things" networks with cellular based systems. Sulyman, who is a senior member of IEEE, joined Embry-Riddle's Prescott Campus in February 2017, having previously taught in Saudi Arabia.

###

About Embry-Riddle Aeronautical University

Embry-Riddle Aeronautical University, the world's largest, fully accredited university specializing in aviation and aerospace, is a nonprofit, independent institution offering more than 80 baccalaureate, master's and Ph.D. degree programs in its colleges of Arts & Sciences, Aviation, Business, Engineering and Security & Intelligence. Embry-Riddle educates students at residential campuses in Daytona Beach, Fla., and Prescott, Ariz., the Worldwide Campus with more than 125 locations in the United States, Europe, Asia and the Middle East, and through online programs. The university is a major research center, seeking solutions to real-world problems in partnership with the aerospace industry, other universities and government agencies. For more information, visit http://www.embryriddle.edu, follow us on Twitter (@EmbryRiddle) and facebook.com/EmbryRiddleUniversity, and find expert videos at YouTube.com/EmbryRiddleUniv

Media Contact

Ginger Pinholster
pinholsv@erau.edu
386-226-4811

 @EmbryRiddle

http://www.erau.edu 

Ginger Pinholster | EurekAlert!

Further reports about: Aeronautical Antennas GHz IEEE cellular systems radio emissions radio waves

More articles from Information Technology:

nachricht Drones shown to make traffic crash site assessments safer, faster and more accurate
17.01.2019 | Purdue University

nachricht Next generation photonic memory devices are light-written, ultrafast and energy efficient
15.01.2019 | Eindhoven University of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>