Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitachi and Singapore’s A*STAR Design Novel Method to Reduce Genome Data Storage

31.05.2012
Hitachi and Data Storage Institute (DSI), a research institute of A*STAR are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry.
Contacts:
Hitachi: Satoko Yasunaga
Corporate Communications
Dept., Hitachi Asia Ltd.
+65 6231 2410
ccd@has.hitachi.com.sg

Data Storage Institute(DSI): Melissa Loh
Assistant Manager
Corporate Communications
+65 6874 6852
lohsm@scei.a-star.edu.sg

Hitachi Asia Ltd. (Hitachi) and Data Storage Institute (DSI), a research institute of the Agency for Science, Technology and Research (A*STAR) are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry. As the volume of such data has been forecasted to double annually, the collaborators aim to develop a more efficient data storage technology that will compress genome sequencing data more effectively than existing methods. This is an extension of an earlier partnership, where Hitachi and DSI researchers discovered the pattern of typical genome data transactions that would enable current storage systems to function optimally.

Genome sequencing is a data intensive process and high-powered machines are required to decipher the order of deoxyribonucleic acid (commonly known as DNA) nucleotide bases – Adenine (A), Cytosine (C), Guanine (G), and Thymine (T) that consist within a DNA molecule. A human genome of an individual contains over three billion of these genetic letters and occupies up to 725 MB of uncompressed data. The data multiplies when it is replicated, processed and shared globally among researchers for more experiments which can amount to terabytes of data. Scientists and medical practitioners rely on genome sequence to decode the string of letters and gain a clearer understanding of the human anatomy, how genes interact and affect the growth and development of an organism. This in turn helps identify the causes of common genetic disorders. For instance, sequencing the genes of tumour cells can aid doctors in their study of mutations and differentiate cancerous cells from normal tissues, enabling them to prescribe appropriate drugs that will treat the affected tumours more accurately.

With such tangible medical benefits compounded by the advancement of high throughput sequencers, the use of genetic analysing tool is becoming more widespread and is likely to lead to an overwhelming increase in the velocity, volume and variety of genome data being created. This trend poses significant challenges for data centres to provide high performance storage systems and fast retrieval of large genomic data files. The exponential growth of genome sequencing data will also place pressures on current data centres, slowing down performance levels and creating massive demands for larger hard disk space. Other factors that will drive cost up include the high energy consumption required to power the data centres and the operating cost of maintaining the infrastructure.

In a bid to address the current computational and scalability limitations, DSI researchers were commissioned to study how genome sequencing data is optimised by researchers from Genome Institute of Singapore (GIS), another A*STAR research institute. Research into the characteristics of genome data revealed that existing data compression methods are unlikely to manage current workloads due to inefficiencies and heavy demands for larger memory storage. Building on the collective insights from this earlier project collaboration, Hitachi and DSI are now working towards perfecting the shortfalls identified in current data storage models to design an innovative genome data compression method reduce data storage capacity needs, quicken decompression speeds and lower storage costs.

“By raising compression capacity, we can envision smaller genome sequencing facilities to handle petabytes of data in a year compared to current terabytes levels which are mostly restricted to large genome sequencing centres due to storage limitations. DSI will continue to play a pivotal role in enabling new storage technologies for the biomedical research and healthcare industry to accelerate research findings and discoveries,” said Dr Pantelis Alexopoulos, DSI’s Executive Director.

“We are delighted to continue our long-standing partnership with DSI in the research field of networked storage. As the industry leader in storage technology and bioinformatics software solutions, I am confident that the outcome of this collaboration will lead to more innovative solutions that could potentially be one of Hitachi’s future areas of business expansion,” said Mr Makoto Nagashima, Managing Director of Hitachi Asia Ltd.

About Hitachi Asia Ltd.
Hitachi Asia Ltd., a subsidiary of Hitachi, Ltd., established in Singapore in 1989, operates across six Asian countries (Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). Business includes information systems, power and industrial systems, digital media systems, and international procurement. For more information about Hitachi Asia, please visit the website at http://www.hitachi.com.sg.

About Hitachi, Ltd.
Hitachi, Ltd. (TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 320,000 employees worldwide. Fiscal 2011 (ended March 31, 2012) consolidated revenues totaled 9,665 billion yen ($117.8 billion). Hitachi will focus more than ever on the Social Innovation Business, which includes information and telecommunication systems, power systems, environmental, industrial and transportation systems, and social and urban systems, as well as the sophisticated materials and key devices that support them. For more information on Hitachi, please visit the company's website at http://www.hitachi.com

About the Agency for Science, Technology and Research (A*STAR)
A*STAR is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovative-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centres, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the Data Storage Institute (DSI)
The Data Storage Institute (DSI) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1992 as the Magnetics Technology Centre (MTC), it was renamed Data Storage Institute in 1996. The research institute's vision is to be a vital node in a global community of knowledge generation and innovation, nurturing research talents and capabilities for world-class R&D in next generation storage technologies.

For more information about DSI, please visit www.dsi.a-star.edu.sg.

Melissa Loh | Research asia research news
Further information:
http://www.dsi.a-star.edu.sg
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Bursting the clouds for better communication
18.10.2018 | Université de Genève

nachricht Research on light-matter interaction could improve electronic and optoelectronic devices
11.10.2018 | Rensselaer Polytechnic Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>