Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-speed CMOS sensors provide better images

10.01.2012
Conventional CMOS image sensors are not suitable for low-light applications such as fluorescence, since large pixels arranged in a matrix do not support high readout speeds. A new optoelectronic component speeds up this process. It has already been patented.

CMOS image sensors have long since been the solution of choice for digital photography. They are much cheaper to produce than existing sensors, and they are also superior in terms of power consumption and handling. Consequently, leading manufacturers of cell-phone and digital cameras fit CMOS chips in their products almost without exception. This not only reduces the demands made of the battery, it also makes increasingly smaller cameras possible.

Yet these optical semiconductor chips are now reaching their limits: while miniaturization in consumer electronics is leading to increasingly smaller pixels around 1 micrometer across, certain applications require larger pixels in excess of 10 micrometers. Particularly in areas where only minimal light is available, such as in X-ray photography or in astronomy, having a larger pixel area compensates for the lack of light. Pinned photodiodes (PPD) are used to convert the light signals into electrical pulses. These optoelectric components are crucial for image processing and are built into the CMOS chips. “Yet when the pixels exceed a certain size, the PPDs have a speed problem”, explains Werner Brockherde, head of department at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS. Low-light applications tend to call for high image rates. “But the readout speed using PPD is too low”, says Brockherde.

The Fraunhofer researchers have now come up with a solution to this problem – it is unique and has already been patented. The scientists have developed a new optoelectronic component, the lateral drift field photodetector (LDPD). “In this component, the charge carriers generated by the incident light move at high speed to the readout node,” explains the researcher. With the PPD the electrons simply diffuse to the exit; a comparatively slow process but which is sufficient for many applications. “But by integrating an internal electric field into the photoactive region of the component, we have managed to accelerate this process by a factor of up to a hundred.”

To produce the new component, the Fraunhofer researchers improved upon the currently available CMOS chip manufacturing process based on the 0.35 µm standard: “The additional LDPD component must not be allowed to impair the properties of the other components,” says Brockherde. Using simulation calculations the experts managed to meet these requirements – and a prototype of the new high-speed CMOS image sensors is already available. “We expect to get approval for series production next year,” says Brockherde.

The high-speed CMOS sensors are ideal candidates for applications that require large pixels and a high readout speed: astronomy, spectroscopy or state-of-the-art X-ray photography are among the potential applications. But the sensors are also ideally suited for use as 3-D sensors based on the time-of-flight process, whereby light sources emit short pulses that are reflected by the objects. The time-of-flight of the reflected light is then recorded by a sensor and used to create a fully-fledged 3-D image. This technology is a compelling proposition for applications such as crash protection, as the sensors can precisely record their environment in three dimensions. The Fraunhofer researchers have already developed this kind of area sensor based on the unique pixel configuration for TriDiCam GmbH.

Werner Brockherde | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/cmos-sensors.html

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>