Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Health data under lock and key: TU Darmstadt introduces long-term-secure storage

08.11.2018

Researchers from the Collaborative Research Center CROSSING at Technische Universität Darmstadt (Germany) have developed a solution that will ensure decades of safe storage for sensitive health data in a joint project with Japanese and Canadian partners. An initial prototype was presented during a recent conference in Beijing, China. The system will go into trial operation in Japan in the coming weeks.

The introduction of an electronic patient record system has been discussed in Germany and internationally for quite some time. However, development is often thwarted by concerns regarding data security.


Long-term-secure storage for sensitive data

Patrick Bal/TU Darmstadt

Health data in particular - which due to the progress of modern medicine contains genome information more frequently than ever before – must be securely stored for a lifetime and or even multiple generations.

A major challenge are the technological developments that will occur over this extended time period, as these have an enormous impact on the security of existing cryptographic schemes. "All encryption methods used today will become insecure over the course of the next few years and decades", explains Professor Johannes Buchmann, spokesperson for the Collaborative Research Center CROSSING. “The attackers’ computing power will increase and their attacks will improve. Therefore we can assume that all encrypted data will be compromised in 20 years if not sooner.”

Buchmann and his team have been working to prevent this since 2015, in cooperation with Japanese research institute NICT (National Institute of Information and Communications Technology). Together they collaborate on the project “LINCOS - Long-Term Integrity and Confidentiality Protection System”.

In 2017, the Japanese hospital operator Kochi Health Science Center and the Canadian company ISARA joined the project. The LINCOS system is the first to combine information theoretic confidentiality protection with renewable integrity protection. This means that no matter what computing capacity and algorithms are available in the future, noone shall be able to access or modify the protected data.

The guarantee of long-term confidentiality is achieved through a technology called “secret sharing”. The original data set is distributed among several servers in such a way that the individual parts are meaningless. Only when a sufficient number of parts – known as “shares” - are combined, the original data set of the patient file can be reconstructed. If one of the servers is compromised, the captured share is of no use to the attacker. In addition, the distribution is renewed regularly.

The integrity, i.e. ensuring that data have not been changed, is achieved by quantum computer-resistant signatures. But even if the scheme utilised is classified as uncertain in the longterm, the researchers have taken precautions: The signature schemes are exchanged regularly. Integrity protection is thereby seamlessly ensured.

The Canadian company ISARA, the industrial partner of the project, protects the data during transfer between the hospital and the server operators with quantum computer-resistant encryption. This is the third component of the LINCOS system. In the future, the researchers want to add yet another level of security that they have already realised in prototype with the Japanese team: quantum key exchange. This procedure guarantees sustainable secure keys, since it is impossible for an attacker to intercept the key exchange. The scientists at Collaborative Research Center CROSSING are even working on this research topic in their own quantum laboratory at TU Darmstadt.

“The sustainable protection of electronic health records is only one example of areas where sustainable security is urgently needed. In our digitised world, we produce an unimaginable amount of sensitive data every day, which must remain confidential and unchanged over a long period of time, for instance in the implementation of Industry 4.0 which is crucial to Germany as an industrial nation. Policymakers are called upon to ensure the guaranteed long-term protection of our data”, appeals Buchmann.

www.crossing.tu-darmstadt.de

More than 65 scientists from cryptography, quantum physics, system security and software engineering jointly work in the Collaborative Research Center CROSSING and perform both basic and application-oriented research. The goal is to develop security solutions that enable secure and trustworthy IT systems in the future. CROSSING is funded by the Deutsche Forschungsgemeinschaft since 2014.

The Technische Universität (TU) Darmstadt is one of Germany’s leading technical universities. TU Darmstadt incorporates diverse science cultures to create its characteristic profile. The focus is set on engineering and natural sciences, which cooperate closely with outstanding humanities and social sciences.

We are enjoying a worldwide reputation for excellent research in our highly-relevant, focused profile areas: cybersecurity, internet and digitalisation, nuclear physics, fluid dynamics and heat- and mass transfer, energy systems and new materials for product innovation. We dynamically develop our portfolio of research and teaching, innovation and transfer, in order to continue opening up important opportunities for the future of society.

Our 312 professors, 4,450 scientific and administrative employees and close to 26,000 students devote their talents and best efforts to this goal. Together with Goethe University Frankfurt and Johannes Gutenberg University Mainz, TU Darmstadt has formed the strategic Rhine-Main Universities alliance.

MI-Nr. 59en/2018, akbr/feu

Silke Paradowski | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-darmstadt.de/

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>