Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Health data under lock and key: TU Darmstadt introduces long-term-secure storage

08.11.2018

Researchers from the Collaborative Research Center CROSSING at Technische Universität Darmstadt (Germany) have developed a solution that will ensure decades of safe storage for sensitive health data in a joint project with Japanese and Canadian partners. An initial prototype was presented during a recent conference in Beijing, China. The system will go into trial operation in Japan in the coming weeks.

The introduction of an electronic patient record system has been discussed in Germany and internationally for quite some time. However, development is often thwarted by concerns regarding data security.


Long-term-secure storage for sensitive data

Patrick Bal/TU Darmstadt

Health data in particular - which due to the progress of modern medicine contains genome information more frequently than ever before – must be securely stored for a lifetime and or even multiple generations.

A major challenge are the technological developments that will occur over this extended time period, as these have an enormous impact on the security of existing cryptographic schemes. "All encryption methods used today will become insecure over the course of the next few years and decades", explains Professor Johannes Buchmann, spokesperson for the Collaborative Research Center CROSSING. “The attackers’ computing power will increase and their attacks will improve. Therefore we can assume that all encrypted data will be compromised in 20 years if not sooner.”

Buchmann and his team have been working to prevent this since 2015, in cooperation with Japanese research institute NICT (National Institute of Information and Communications Technology). Together they collaborate on the project “LINCOS - Long-Term Integrity and Confidentiality Protection System”.

In 2017, the Japanese hospital operator Kochi Health Science Center and the Canadian company ISARA joined the project. The LINCOS system is the first to combine information theoretic confidentiality protection with renewable integrity protection. This means that no matter what computing capacity and algorithms are available in the future, noone shall be able to access or modify the protected data.

The guarantee of long-term confidentiality is achieved through a technology called “secret sharing”. The original data set is distributed among several servers in such a way that the individual parts are meaningless. Only when a sufficient number of parts – known as “shares” - are combined, the original data set of the patient file can be reconstructed. If one of the servers is compromised, the captured share is of no use to the attacker. In addition, the distribution is renewed regularly.

The integrity, i.e. ensuring that data have not been changed, is achieved by quantum computer-resistant signatures. But even if the scheme utilised is classified as uncertain in the longterm, the researchers have taken precautions: The signature schemes are exchanged regularly. Integrity protection is thereby seamlessly ensured.

The Canadian company ISARA, the industrial partner of the project, protects the data during transfer between the hospital and the server operators with quantum computer-resistant encryption. This is the third component of the LINCOS system. In the future, the researchers want to add yet another level of security that they have already realised in prototype with the Japanese team: quantum key exchange. This procedure guarantees sustainable secure keys, since it is impossible for an attacker to intercept the key exchange. The scientists at Collaborative Research Center CROSSING are even working on this research topic in their own quantum laboratory at TU Darmstadt.

“The sustainable protection of electronic health records is only one example of areas where sustainable security is urgently needed. In our digitised world, we produce an unimaginable amount of sensitive data every day, which must remain confidential and unchanged over a long period of time, for instance in the implementation of Industry 4.0 which is crucial to Germany as an industrial nation. Policymakers are called upon to ensure the guaranteed long-term protection of our data”, appeals Buchmann.

www.crossing.tu-darmstadt.de

More than 65 scientists from cryptography, quantum physics, system security and software engineering jointly work in the Collaborative Research Center CROSSING and perform both basic and application-oriented research. The goal is to develop security solutions that enable secure and trustworthy IT systems in the future. CROSSING is funded by the Deutsche Forschungsgemeinschaft since 2014.

The Technische Universität (TU) Darmstadt is one of Germany’s leading technical universities. TU Darmstadt incorporates diverse science cultures to create its characteristic profile. The focus is set on engineering and natural sciences, which cooperate closely with outstanding humanities and social sciences.

We are enjoying a worldwide reputation for excellent research in our highly-relevant, focused profile areas: cybersecurity, internet and digitalisation, nuclear physics, fluid dynamics and heat- and mass transfer, energy systems and new materials for product innovation. We dynamically develop our portfolio of research and teaching, innovation and transfer, in order to continue opening up important opportunities for the future of society.

Our 312 professors, 4,450 scientific and administrative employees and close to 26,000 students devote their talents and best efforts to this goal. Together with Goethe University Frankfurt and Johannes Gutenberg University Mainz, TU Darmstadt has formed the strategic Rhine-Main Universities alliance.

MI-Nr. 59en/2018, akbr/feu

Silke Paradowski | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-darmstadt.de/

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>