Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene enables clock rates in the terahertz range

10.09.2018

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics.


Graphene converts electronic signals with frequencies in the gigahertz range extremely efficiently into signals with several times higher frequency.

Juniks/HZDR

Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Today’s silicon-based electronic components operate at clock rates of several hundred gigahertz (GHz), that is, they are switching several billion times per second. The electronics industry is currently trying to access the terahertz (THz) range, i.e., up to thousand times faster clock rates. A promising material and potential successor to silicon could be graphene, which has a high electrical conductivity and is compatible with all existing electronic technologies.

In particular, theory has long predicted that graphene could be a very efficient “nonlinear” electronic material, i.e., a material that can very efficiently convert an applied oscillating electromagnetic field into fields with a much higher frequency. However, all experimental efforts to prove this effect in graphene over the past ten years have not been successful.

“We have now been able to provide the first direct proof of frequency multiplication from gigahertz to terahertz in a graphene monolayer and to generate electronic signals in the terahertz range with remarkable efficiency,” explains Dr. Michael Gensch, whose group conducts research on ultrafast physics and operates the novel TELBE terahertz radiation source at the HZDR.

And not only that – their cooperation partners led by Prof. Dmitry Turchinovich, experimental physicist at the University of Duisburg-Essen (UDE), have succeeded in describing the measurements quantitatively well using a simple model based on fundamental physical principles of thermodynamics.

With this breakthrough, the researchers are paving the way for ultrafast graphene-based nanoelectronics: “We were not only able to experimentally demonstrate a long-predicted effect in graphene for the first time, but also to understand it quantitatively well at the same time,” emphasizes Prof. Dmitry Turchinovich.

“In my laboratory we have been investigating the basic physical mechanisms of the electronic nonlinearity of graphene already for several years. However, our light sources were not sufficient to actually detect and quantify the frequency multiplication clean and clear. For this, we needed experimental capabilities which are currently only available at the TELBE facility.”

The long-awaited experimental proof of extremely efficient terahertz high harmonics generation in graphene has succeeded with the help of a trick: The researchers used graphene that contains many free electrons, which come from the interaction of graphene with the substrate onto which it is deposited, as well as with the ambient air.

If these mobile electrons are excited by an oscillating electric field, they share their energy very quickly with the other electrons in graphene, which then react much like a heated fluid: From an electronic “liquid”, figuratively speaking, an electronic “vapor” forms within the graphene. The change from the “liquid” to the “vapor” phase occurs within trillionths of a second and causes particularly rapid and strong changes in the conductivity of graphene. This is the key effect leading to efficient frequency multiplication.

The scientists used electromagnetic pulses from the TELBE facility with frequencies between 300 and 680 gigahertz and converted them in the graphene into electromagnetic pulses with three, five and seven times the initial frequency, i.e. up-converted them into the terahertz frequency range. “The nonlinear coefficients describing the efficiency of the generation of this third, fifth and seventh harmonic frequency were exceptionally high,” explains Turchinovich.

“Graphene is thus possibly the electronic material with the strongest nonlinearity known to date. The good agreement of the measured values with our thermodynamic model suggests that we will also be able to use it to predict the properties of ultrahigh-speed nanoelectronic devices made of graphene.” Prof. Mischa Bonn, Director of the MPI-P, who was also involved in this work, emphasizes: “Our discovery is groundbreaking. We have demonstrated that carbon-based electronics can operate extremely efficiently at ultrafast rates. Ultrafast hybrid components made of graphene and traditional semiconductors are also conceivable.”

The experiment was performed using the novel, superconducting-accelerator-based TELBE terahertz radiation source at the ELBE Center for High-Power Radiation Sources at the HZDR. Its hundred times higher pulse rate compared to typical laser-based terahertz sources made the measurement accuracy required for the investigation of graphene possible in the first place. A data processing method developed as part of the EU project EUCALL allows the researchers to actually use the measurement data taken with each of the 100,000 light pulses per second. “For us there is no bad data,” says Gensch.

“Since we can measure every single pulse, we gain orders of magnitude in measurement accuracy. In terms of measurement technology, we are at the limit of what is currently feasible.” The first authors of the article are the two young scientists Hassan A. Hafez (UDE/MPI-P) and Sergey Kovalev (HZDR).

Media contact:
Dr. Christine Bohnet | Press Officer and Head of HZDR Communications
Phone +49 351 260 - 2450 or +49 160 969 288 56 | Email: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR) | www.hzdr.de

Ulrike Bohnsack | Press Officer
Phone: +49 203 37 - 92429 | Email: ulrike.bohnsack@uni-due.de
University of Duisburg-Essen (UDE) | https://www.uni-due.de/de

Dr. Christian Schneider | Press Officer
Phone: +49 6131 379 - 132 | Email: c.schneider@mpip-mainz.mpg.de
Max Planck Institute for Polymer Research (MPI-P) Mainz | http://www.mpip-mainz.mpg.de

Wissenschaftliche Ansprechpartner:

Dr. Michael Gensch
Head of the High-field THz-driven Phenomena group at HZDR
Phone +49 351 260 - 2464 | Email: m.gensch@hzdr.de

Originalpublikation:

H.A. Hafez ,S. Kovalev, et al.: „Extremely efficient terahertz high harmonic generation in graphene by hot Dirac fermions“, in: Nature (DOI: 10.1038/s41586-018-0508-1)

Weitere Informationen:

https://www.hzdr.de/presse/graphen

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

More articles from Information Technology:

nachricht ETRI exchanged quantum information on daylight in a free-space quantum key distribution
10.12.2018 | National Research Council of Science & Technology

nachricht Three components on one chip
06.12.2018 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>