Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More GPU Routines for Scientific Research - Now Available from Numerical Algorithms Group

05.05.2010
Scientists in a wide array of disciplines --- biochemistry, physics, geology, genomics, oceanography, etc.--- who are interested in achieving top performance from GPUs in diverse applications using Monte Carlo simulations can now obtain an updated version of NAG numeric routines for GPUs from the Numerical Algorithms Group (NAG).
General Purpose GPUs (graphical processing units) were originally used for 3D gaming acceleration on personal computers but have recently been at the forefront of numerical and scientific computation. Monte Carlo simulations are used in a wide array of technical computing applications in diverse areas such as finance, engineering simulations, drug discovery, scientific research, oil and gas exploration, and more.

Speaking for NVIDIA, a leader in GPU computing, Andrew Cresci, GM Vertical Marketing comments, “The ecosystem around GPU computing is growing rapidly and NAG’s additions to their routines for GPU computing could not be more timely. NAG’s numerical libraries are renowned for delivering top performance while maintaining the highest standards of accuracy. There are now some 60,000 active CUDA developers, and providing access to trusted algorithms from NAG is a major milestone that enhances the maturity of NVIDIA’s GPU computing architecture.”

NAG’s numerical routines for GPU computing are available to academic researchers involved in collaborative research with the NAG organization. Commercial organizations can also get access to NAG’s GPU code and programming services by contacting the NAG offices in their locale-- http://www.nag.com/contact_us.asp.

The latest release of NAG’s code for GPUs contains routines for Monte Carlo simulations—Quasi and Pseudo Random Number Generators, Brownian bridge, and associated statistical distributions. For more details, see www.nag.com/numeric/GPUs.

About NAG

With origins in several UK universities, the Numerical Algorithms Group (NAG, www.nag.com), is an Oxford, UK headquartered not-for-profit numerical software development organization that collaborates with world-leading researchers and practitioners in academia and industry. NAG serves its customers from offices in Oxford, Manchester, Chicago, Tokyo and Taipei, through field sales staff in France and Germany, as well as via a global network of distributors.
For editorial inquiries, please contact:

Amy Munice, ALM Communications,
nag@almcommunications.com, +1-773-862-6800, (skype) ALMCommunications.

Katie O’Hare, NAG Marketing Communications Manager,
Katie.OHare@nag.co.uk, +44 (0)1865 511245.

Hiro Chiba, Chief Operating Officer – Nihon NAG,
sales@nag-j.co.jp, +81 3 5542 6311.
Edward Chou, NAG Greater China General Manager,
Edward@nag-gc.com, Tel: +886-2-2509328

(www.nag.com, www.nag.co.uk, www.nag-gc.com, www.nag-j.co.jp)

Amy Munice | ALM Communications
Further information:
http://www.nag.com/numeric/GPUs

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>