Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold ‘necklaces’ add sparkle to information processing

19.05.2015

Researchers realize highly confined transport of light energy over long distances using networks of gold nanoparticles

A way to transport highly confined light energy over long distances using extended networks of partially fused gold nanoparticles has been demonstrated by an international team of researchers [1]. This demonstration raises the possibility of new options for information processing by realizing extremely miniaturized light guidance and may lead to advances in sensors and telecommunication systems.


A 750-nanometer-long network of gold nanoparticles (yellow). The colors around the network show where different colors of light are localized. © 2015 A*STAR Institute of Materials Research and Engineering

“Our approach has all the versatility that chemistry involving colloids offers and could be used to fabricate miniaturized optical networks,” explains Michel Bosman of the A*STAR Institute of Materials Research and Engineering in Singapore.

Light travels rapidly, making it a highly attractive medium for transmitting information. Currently, optical fibers are used to transport optical signals over long distances, but they are unsuitable on small scales as their dimensions cannot be shrunk much below the wavelength of light. One promising approach is to use light-induced oscillations of electrons (known as surface plasmons) on nanoparticles, but until now it had not been possible to couple plasmons between large numbers of touching nanoparticles.

Bosman, together with collaborators at CEMES in France and at Bristol in the United Kingdom, devised a way to propagate surface plasmons over long chains of gold nanoparticles. This allowed them to miniaturize the transport of highly confined light over distances that are long enough to be useful for optical circuits.

The researchers synthesized gold nanoparticles that were 12 nanometers in diameter and self-assembled them into networks by adding the compound mercaptoethanol. They then ‘welded’ the nanoparticles together by irradiating them with a high-energy electron beam.

The team investigated the light propagation properties of the networks using a technique known as electron energy-loss spectroscopy. These measurements demonstrated that the networks form pathways along which light energy can travel as surface plasmons (see image).

The results were much clearer than the researchers expected. “We were surprised to see that the surface plasmons were not weakened much by the grain boundaries that exist between neighboring nanoparticles,” says Bosman. “Our networks contain hundreds of grain boundaries, and yet the surface plasmons would oscillate across them mostly unhindered.”

In the future, the team hopes to produce designer networks using their nanoparticles. “Currently, we cannot control the design of our nanoparticle networks in detail,” says Bosman. “We intend to combine our technique with lithography to gain full control over their length and shape and form designed optical networks made with colloidal nanoparticles as building blocks.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Reference

[1] Teulle, A., Bosman, M., Girard, C., Gurunatha, K. L., Li, M., Mann, S. & Dujardin, E. Multimodal plasmonics in fused colloidal networks. Nature Materials 14, 87–94 (2015).


Associated links
A*STAR Research article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>