Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Computer Scientists Join Forces to Make Interactive 3D Graphics Part of the World Wide Web

06.08.2012
Interactive 3D graphics are not available on the World Wide Web even though almost all PCs as well as mobile and embedded devices already contain high-performance 3D graphics hardware to process it.

Now, computer scientists from the German Research Center for Artificial Intelligence and Fraunhofer Institute for Computer Graphics Research are joining forces to change that. Together, they are working to describe computer scenes in spatial detail directly within the websites’ code.


Car Design in 3D: Philipp Slusallek simplifies interactive 3D graphics on the World Wide Web.
bellhäuser - das bilderwerk

The German Research Center for Artificial Intelligence (DFKI) in Saarbrücken and the Fraunhofer Institute for Computer Graphics Research (Fraunhofer IGD) in Darmstadt have agreed on a common proposal to extend the Hypertext Markup Language (HTML) to also include advanced graphics capabilities.

The proposal allows for easily describing 3D geometry, its material properties (shaders), lights, and virtual cameras as new HTML elements. "These elements can be used almost exactly like existing HTML elements. Therefore, millions of Web developers can quickly begin to include interactive 3D visualizations in their Web applications," says Philipp Slusallek, professor for computer graphics at Saarland University and scientific director in the DFKI and in the Intel Visual Computing Institute (VCI).

"By identifying a small core of essential building blocks from the existing prototypes and scene-graph standards for a interactive three-dimensional experience on the Web, we have made it as simple as possible for browser vendors to include the new technology but still offer Web developers the full flexibility for designing fully dynamic and interactive 3D Web experiences," says Johannes Behr, head of the Competence Center for Visual Computing System Technologies at Fraunhofer IGD and leader of the X3DOM development team. The proposed declarative extension to HTML offers a high-level approach for Web developers, extending the low-level procedural approach to talk to graphics hardware now offered by WebGL. "Instead of requiring Web developers to become WebGL experts or learn new APIs, we are adding advanced graphics capabilities to HTML, allowing Web developers to reuse their existing skills and directly apply the Web technology they use on a daily basis," explains Kristian Sons, head of the XML3D research group at DFKI/VCI.

At least two implementations will be made available: For the short term a JavaScript implementation using WebGL for rendering will allow developers to get started immediately, while a native implementation integrated within the browser will offer optimal performance and full functionality.

The two institutes originally each had their own proposals, namely X3DOM and XML3D, but recently joined forces to define a common standard. The two groups distilled their technologies into the essential components needed for bringing interactive and highly dynamic 3D graphics to the declarative world of HTML. "Our two proposals were essential in order to gain experience and evaluate a number of different approaches," says Yvonne Jung, senior researcher and core developer for X3DOM at Fraunhofer IGD. This joint research was supported by the German Software-Cluster initiative and the Intel Visual Computing Institute at Saarland University.

The joint proposal will be officially presented at the SIGGRAPH 2012 and Web3D conferences this week in Los Angeles. A more detailed specification is scheduled to be presented to the World Wide Web Consortium (W3C) at its yearly Technical Plenary / Advisory Committee meeting (TPAC) in early November and will be offered to the W3C Community Group on "Declarative 3D for the Web" for further discussions and potential standardization.

Presentations about the joint proposal will be made at the following events around SIGGRAPH:

SIGGRAPH BOF: X3DOM a Declarative 3D Solution
WEDNESDAY, 8 AUGUST 10:00 AM - 11:00 AM |
Los Angeles Convention Center - Room 513
SIGGRAPH BOF: WebGL
WEDNESDAY, 8 AUGUST 4:00 PM - 5:00 PM |
JW Marriott Los Angeles L.A. Live - Gold Ballroom Salon 3
SIGGRAPH BOF: X3DOM a Declarative 3D Solution
WEDNESDAY, 8 AUGUST 10:00 AM - 11:00 AM |
Los Angeles Convention Center - Room 513
SIGGRAPH BOF: WebGL
WEDNESDAY, 8 AUGUST 4:00 PM - 5:00 PM |
JW Marriott Los Angeles L.A. Live - Gold Ballroom Salon 3
For more information, please contact:
Philipp Slusallek
Professor of Computer Graphics at Saarland University
Scientific Director in the German Research Center for Artificial Intelligence and Intel Visual Computing Institute

Email: slusallek@dfki.de

Dr. Johannes Behr
Head of the Competence Center for Visual Computing System Technologies
Fraunhofer IGD
Darmstadt, Germany
Email: johannes.behr@igd.fraunhofer.de
Kristian Sons
Head of the XML3D project
German Research Center for Artificial Intelligence
Saarbrücken, Germany
Phone: +49 681 85775 3833
Email: kristian.sons@dfki.de
Gordon Bolduan
Scientific Communicator
Phone: +49 681 302-70741
E-Mail: gbolduan@mmci.uni-saarland.de
Weitere Informationen:
http://www.x3dom.org
http://www.xml3d.org
http://www.w3.org/community/declarative3d/

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Information Technology:

nachricht A platform for stable quantum computing, a playground for exotic physics
05.12.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Developing a digital twin
05.12.2019 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>