Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics Inspired Research Prevents Cyber Attacks

16.02.2012
Cyber security is an ever changing and growing concern. Nearly twice as much cyber security funding proposed in the 2013 budget underscores the need for improved computer network defenses. Inadequate security configurations are blamed for 80 percent of the United States Air Force network vulnerabilities.

Now Wake Forest University researchers are fighting the continual evolution of viruses, worms and malware with evolution by developing the first-ever automated computer configurations that adjust as quickly as the threats.

Computer Science Associate Professor Errin Fulp and graduate student Michael Crouse are refining a genetically inspired algorithm that proactively discovers more secure computer configurations by leveraging the concept of “survival of the fittest.” Early simulations have shown the increased diversity of each device’s configuration improves overall network safety, without putting undue stress on IT administrators.

“Typically, administrators configure hundreds and sometimes thousands of machines the same way, meaning a virus that infects one could affect any computer on the same network,” says Crouse, who recently was named one of the “nation’s top new inventors” by Inventor’s Digest magazine. “If successful, automating the ability to ward off attacks could play a crucial role in protecting highly sensitive data within large organizations.”

Funded by a grant from Pacific Northwest National Laboratory (PNNL), the researchers aim to improve defense mechanisms of similar computing infrastructures with minimal human interaction.

Cyber attacks usually take place in two phases, says Fulp. In the reconnaissance phase, a virus simply observes the landscape, identifies possible defense mechanisms and looks for the best way in. If nothing has changed since the reconnaissance phase upon return, the virus strikes. But security experts say even the slightest change in environment can make a huge difference in deterring potential attackers.

“If we can automatically change the landscape by adding the technological equivalent of security cameras or additional lighting, the resulting uncertainty will lower the risk of attack,” explains Fulp.

Researchers are currently testing their work to transform cyber security. Planned assessment includes integrating the automated system into the computer science department’s annual “hackathon,” giving budding developers the opportunity to improve the system.

Though no one has successfully modeled this complex process before, this is not the first time Fulp and Crouse have turned to nature to guide their research. Read more about their bio-inspired projects to improve cyber security at http://go.wfu.edu/bioinspiration.

Katie Neal | Newswise Science News
Further information:
http://www.wfu.edu
http://go.wfu.edu/bioinspiration

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>