Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gecko adhesion technology moves closer to industrial uses

13.12.2017

A gecko scampering up a wall or across a ceiling has long fascinated scientists and encouraged them to investigate how to harness lizard's mysterious ability to defy gravity.

While human-made devices inspired by gecko feet have emerged in recent years, enabling their wearers to slowly scale a glass wall, the possible applications of gecko-adhesion technology go far beyond Spiderman-esque antics.


This is a microscopic image showing the walls formed to mimic the adhesion characteristics of gecko feet.

Credit: Georgia Tech

A Georgia Institute of Technology researcher is looking into how the technology could be applied in a high-precision industrial setting, such as in robot arms used in manufacturing computer chips.

"There are numerous ways that gecko adhesion could be used in an industrial setting, especially in handling delicate materials like the silicon wafers used in manufacturing computer processors," said Michael Varenberg, an assistant professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering.

But before robot arms and other devices can implement gecko adhesion technology, researchers need more information about the mechanical and physical characteristics of the human-made adhesive surfaces.

In a study published Dec. 13 in Journal of the Royal Society Interface, Varenberg looked at a particular type of gecko-inspired adhesive surface and narrowed down a range of angles at which the material will attach stronger and release its grip easier.

The gecko gets its unique ability through the use of tiny hairs that interact with surfaces at an intermolecular level. It's a one-two process during which the tiny film-like hairs are pressed onto the surface and engaged with a shearing action. They then either hold to the surface or easily release when pulled away at different directions.

For that process to be replicated in a factory using man-made adhesive technology, researchers must determine the precise angles at which to apply a load to get or release the grip between the robotic arm and the silicon wafer.

Varenberg's team tested a wall-shaped microstructure surface molded out of polyvinylsiloxane and designed to mimic the gecko's attachment ability. Their tests showed that the optimum attachment angle varies between 60 and 90 degrees, while the microstructure detach at zero force when the pull-off angle reaches 140-160 degrees.

"That relatively wide range to control the attachment and pulling away for these wall-shaped microstructures will make it easier to build a mechanical process around that tolerance," Varenberg said.

That could hold promise for replacing a current method used during the processing and inspection of silicon wafers in computer processor production. Robot arms employ ceramic chucks that use vacuum or electrostatic grippers to pick up and handle the wafers. Soon after installation, the ceramic contact posts start wearing down due to cyclic loading and release particles that can potentially contaminate the backside of the wafer leading to lithography defects on its front side.

"This reality is inconsistent with the cleanliness standards required in the semiconductor industry," Varenberg said. "Using gecko adhesion microstructures instead would be better because they do not generate any damage to wafers and do not wear over time."

Next steps in the research include simplifying the manufacturing technique, working with industrial-grade materials as well as studying the effects of environment and surface geometry parameters, Varenberg said.

###

CITATION: Jae-Kang Kim and Michael Varenberg, "Biomimetic wall-shaped adhesive microstructure for shear-induced attachment: the effects of pulling angle and preliminary displacement," (J. R. Soc. Interface, Dec. 13, 2017). http://dx.doi.org/10.1098/rsif.2017.0832

Josh Brown | EurekAlert!

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>