Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber-optic transmission of 4,000 km made possible by ultra-low-noise optical amplifiers

06.07.2018

Researchers from Chalmers University of Technology, Sweden, and Tallinn University of Technology, Estonia, have demonstrated a 4000 kilometre fibre-optical transmission link using ultra low-noise, phase-sensitive optical amplifiers. This is a reach improvement of almost six times what is possible when using conventional optical amplifiers. The results are published in Nature Communications.

Video streaming, cloud storage and other online services have created an insatiable demand for higher transmission capacity. To meet this demand, new technologies capable of significant improvements over existing solutions are being explored worldwide.


Signal constellation diagrams comparing conventional amplification and phase-sensitive amplification in an amplifier noise limited regime (-2 dBm launch power) and a fibre nonlinearity limited regime (8 dBm launch power).

Credit: Samuel Olsson

The reach and capacity in today's fibre optical transmission links are both limited by the accumulation of noise, originating from optical amplifiers in the link, and by the signal distortion from nonlinear effects in the transmission fibre.

In this ground-breaking demonstration, the researchers showed that the use of phase-sensitive amplifiers can significantly, and simultaneously, reduce the impact of both of these effects.

"While there remain several engineering challenges before these results can be implemented commercially, the results show, for the first time, in a very clear way, the great benefits of using these amplifiers in optical communication", says Professor Peter Andrekson, who leads the research on optical communication at Chalmers University of Technology.

The amplifiers can provide a very significant reach improvement over conventional approaches, and could potentially improve the performance of future fibre-optical communication systems.

"Such amplifiers may also find applications in quantum informatics and related fields, where generation and processing of quantum states are of interest, as well as in spectroscopy or any other application which could benefit from ultra-low-noise amplification", says Professor Peter Andrekson.

###

The research has been funded by the European Research Council (ERC), the Swedish Research Council, and the Wallenberg Foundation.

Media Contact

Johanna Wilde
johanna.wilde@chalmers.se
46-317-722-029

 @chalmersuniv

http://www.chalmers.se/en/ 

Johanna Wilde | EurekAlert!
Further information:
https://www.chalmers.se/en/departments/mc2/news/Pages/Fibre-optic-transmission-of-4000-km-made-possible-by-ultra-low-noise-optical-amplifiers.aspx
http://dx.doi.org/10.1038/s41467-018-04956-5

More articles from Information Technology:

nachricht New software designed for rapid, automated identification of dendritic spines
06.07.2018 | Max Planck Florida Institute for Neuroscience

nachricht Three years research on next generation of mobile communication (5G) sucessfully finished
06.07.2018 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

LandKlif: Changing Ecosystems

06.07.2018 | Awards Funding

UV narrow-band photodetector based on indium oxide nanocrystals

06.07.2018 | Physics and Astronomy

Expansion of agricultural land reduces CO2 absorption

06.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>