Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, Fast Computing Simulation Tool Nets Best Paper Award

27.01.2010
Novel research on improving the simulation performance of hardware models created in a language called SystemC, often used to shorten manufacturing design cycles to improve the time it takes to bring a product to the marketplace, has garnered a best paper award at the 15th Asia and South Pacific Design Automation Conference (ASP-DAC) for a team led by Sandeep Shukla, Virginia Tech associate professor of electrical and computer engineering (ECE), and three of his students.
Shukla, a 2004 recipient of a Presidential Early Career Award for Scientists and Engineers (PECASE) and a 2008 recipient of the Freidrich Wilhelm Bessel Award from the Humboldt Foundation of Germany, http://www.ece.vt.edu/faculty/shukla.php

wrote the paper with his current Ph.D. students, Mahesh Nanjundappa and Bijoy A. Jose, also of Virginia Tech, and a past Ph.D. advisee Hiren D. Patel who is now an ECE assistant professor at the University of Waterloo in Canada.

Shukla and his collaborators said that they were able to demonstrate how to speed up the simulation performance of certain SystemC based hardware models “by exploiting the high degree of parallelism afforded by today’s general purpose graphic processor units (GPGPU).” These units have multiple core processors capable of very high computation and data throughput. When parallelism is applied, it means that the processor units can run various parts of the simulations simultaneously, and not just as a single sequence of computations. Their experiments were carried out on an NVIDIA Tesla 870 with 256 processing cores. This equipment was donated to Shukla’s lab by NVIDIA during fall 2008.

Shukla said their preliminary experiments showed they were able to speed up SystemC based simulation by factors of 30 to 100 times that of previous performances.

They named their simulation infrastructure SCGPSim. The Air Force Office of Scientific Research and the National Science Foundation helped support this research.

In the past, Shukla said, “significant effort was aimed at improving the performance of SystemC simulations, but little had been directed at making them operate in parallel. And none of the attempts were ever targeted at a massively parallel platform such as a general purpose graphic processor unit.”

Another aspect of their work was the use of a specific programming model called Compute Unified Device Architecture (CUDA). It is an extension to the C software language that “exploits the processing power of graphic processor units to solve complex compute-intensive problems efficiently,” Shukla explained. “High performance is achieved by launching a number of threads and making each thread execute a part of the application in parallel.”

The CUDA execution model differs from the more commonly known central processing unit (CPU) based execution in terms of how the threads are scheduled. With CUDA, it is possible to have all of the threads execute simultaneously on separate processor cores and intermittently converge on the same path, thus increasing the efficiency.

The work at Virginia Tech was conducted in the Formal Engineering Research with Models, Abstractions and Transformations (FERMAT) Laboratory, founded by Shukla in 2002. Its focus is in designing, analyzing and predicting performance of electronic systems, particularly systems embedded in automated systems. http://www.fermat.ece.vt.edu/

“Speeding up simulation of complex hardware models is extremely important for semiconductor electronics industry to producer newer and newer products in shorter times, thus improving the quality of computing and consumer electronics products faster. If such models can be simulated 10 times faster, then if validating a model took 10 days in the past, now it would take one day. This is why faster simulation performance probably attracted the attention of the ASP-DAC ’10 awards committee.” Shukla said.

ASP-DAC is one of the three conferences sponsored by IEEE Circuits and Systems Society, and ACM Special Interests Group on Design Automation, on the topic of electronics design automation. These three conferences are held every year in the US (DAC) , in Europe (DATE) and in the Asia-pacific region (ASP-DAC).

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu
http://www.eng.vt.edu/main/index.php
http://www.asp-dac.itri.org.tw/aspdac2010/awards/index.html

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>