Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme makeover: computer science edition

17.11.2008
Suppose you have a cherished home video, taken at your birthday party. You're fond of the video, but your viewing experience is marred by one small, troubling detail.

There in the video, framed and hanging on the living room wall amidst the celebration, is a color photograph of your former significant other.

Bummer.

But what if you could somehow reach inside the video and swap the offending photo for a snapshot of your current love? How perfect would that be?

A group of Stanford University researchers specializing in artificial intelligence have developed software that makes such a switch relatively simple. The researchers, computer science graduate students Ashutosh Saxena and Siddharth Batra, and Assistant Professor Andrew Ng, see interesting potential for the technology they call ZunaVision.

They say a user of the software can easily plunk an image on almost any planar surface in a video, whether wall, floor or ceiling. And the embedded images don't have to be still photos—you can insert a video inside a video.

Here's the opportunity to sing karaoke side-by-side with your favorite American Idol celebrity and post the video to YouTube. Or preview a virtual copy of a painting on your wall before you buy. Or liven up those dull vacation videos.

There is also a potential financial aspect to the technology. The researchers suggest that anyone with a video camera might earn some spending money by agreeing to have unobtrusive corporate logos placed inside their videos before they are posted online. The person who shot the video, and the company handling the business arrangements, would be paid per view, in a fashion analogous to Google AdSense, which pays websites to run small ads.

The embedding technology is driven by an algorithm that first analyzes the video, with special attention paid to the section of the scene where the new image will be placed. The color, texture and lighting of the new image are subtly altered to blend in with the surroundings. Shadows seen in the original video will be seen in the added image as well. The result is a photo or video that appears to be an integral part of the original scene, rather than a sticker pasted artificially on the video.

For the algorithm ("3D Surface Tracker Technology") to produce these realistic results, it also must deal with what researchers call "occluding objects" in the video. In our birthday video, an "occluding object" might be a partygoer walking in front of the newly hung photo. The algorithm can handle most such objects by keeping track of which pixels belong to the photo and which belong to the person walking in the foreground; the photo disappears behind the person walking by and then reappears, just as in the original video.

Camera motion gives the algorithm another item to digest. As the camera pans and zooms, the portion of the wall containing the embedded object moves and changes shape. The embedded image must keep up with this shape-shifting geometry, or the video may go one direction while the embedded image goes another.

To prevent such mishaps, the algorithm builds a model, pixel by pixel, of the area of interest in the video. "If the lighting begins to change with the motion of the video or the sun or the shadows, we keep a belief of what it will look like in the next frame. This is how we track with very high sub-pixel accuracy," Batra said. It's as if the embedded image makes an educated guess of where the wall is going next, and hurries to keep up.

Other technologies can perform these tricks—witness the spectacular special effects in movies and the virtual first-down lines on televised football games—but the Stanford researchers say the existing systems are expensive, time consuming and require considerable expertise.

Some of the recent Stanford work grew out of an earlier project, Make3D, a website that converts a single still photograph into a brief 3D video. It works by finding planes in the photo and computing their distance from the camera, relative to each other.

"That means, given a single image, our algorithm can figure out which parts are in the front and which parts are in the background," said Saxena. "Now we have extended this technology to videos."

The researchers realize that their technology will be used in unpredictable ways, but they have some guesses. "Suppose you're a student living in a dorm and suppose you want to show it to your parents [in a video]. You can put a nice poster there of Albert Einstein," Batra said. "But if you want to show it to your friends, you can have a Playboy poster there."

A hands-on demonstration of the technology can be seen at http://zunavision.stanford.edu.

Dan Stober | EurekAlert!
Further information:
http://zunavision.stanford.edu

More articles from Information Technology:

nachricht NIST's antenna evaluation method could help boost 5G network capacity and cut costs
11.12.2018 | National Institute of Standards and Technology (NIST)

nachricht ETRI exchanged quantum information on daylight in a free-space quantum key distribution
10.12.2018 | National Research Council of Science & Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>