Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimentally demonstrated a toffoli gate in a semiconductor three-qubit system

02.03.2018

A new progress in the scaling of semiconductor quantum dot based qubit has been achieved at Key Laboratory of Quantum Information and Synergetic Innovation Center of Quantum Information & Quantum Physics of USTC. Professor GUO Guoping with his co-workers, XIAO Ming, LI Haiou and CAO Gang, designed and fabricated a quantum processor with six quantum dots, and experimentally demonstrated quantum control of the Toffoli gate.

This is the first time for the realization of the Toffoli gate in the semiconductor quantum dot system, which motivates further research on larger scale semiconductor quantum processor. The result was published as 'Controlled Quantum Operations of a Semiconductor Three-Qubit System ' (Physical Review Applied 9, 024015 (2018)).


This is the Toffoli Gate in a three-qubit system.

Credit: University of Science and Technology of China

Developing the scalable semiconductor quantum chip that is compatible with modern semiconductor-techniques is an important research area. In this area, the fabrication, manipulation and scaling of semiconductor quantum dot based qubits are the most important core technologies.

Professor GUO Guoping's group aims to master these technologies and has been devoted to this area for a long time. Before the demonstration of the three-qubit gate, they have realized ultrafast universal control of the charge qubit based on semiconductor quantum dots in 2013(Nature Communications. 4:1401 (2013)), and achieved the controlled rotation of two charge qubits in 2015(Nature Communications. 6:7681 (2015)).

The Toffoli gate is a three-qubit operation that changed the state of a target qubit conditioned on the state of two control qubits. It can be used for universal reversible classical computation and also forms a universal set of qubit gates in quantum computation together with a Hadamard gate.

Furthermore, it is a key element in quantum error correction schemes. Implementation of the Toffoli gate with only single- and two-qubit operations requires six controlled-NOT gates and ten single-qubit operations.

As a result, a single-step Toffoli gate can reduce the number of quantum operations dramatically, which can break the limit of coherence time and improve the efficiency of quantum computing. Researchers from Guo's group found the T-shaped six quantum dot architecture with openings between control qubits and the target qubit can strengthen the coupling between qubits with different function and minimize it between qubits with the same function, which satisfies the requirements of the Toffoli gate well.

Using this architecture with optimized high frequency pulses, researchers demonstrated the Toffoli gate in semiconductor quantum dot system in the world for the first time, which paves the way and lays a solid foundation for the scalable semiconductor quantum processor.

The reviewer spoke highly of this work, and thought this is an important progress in the field of semiconductor quantum dot based quantum computing."The work is detailed and clearly demonstrates a high level of experimental technique and would be of high interest to people working in the field of electrostatically defined quantum dots for quantum computation".

Media Contact

FAN Qiong
englishnews@ustc.edu.cn
86-636-07280

http://en.ustc.edu.cn 

FAN Qiong | EurekAlert!

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>