Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018

Scientists from Fraunhofer FEP developped a large-area high-resolution low-power OLED microdisplay with high framerates. The use of these microdisplays in VR glasses can help to avoid motion sickness. The new displays can be seen at awe europe in Munich/ Germany from October 18 to 19, 2018 at booth no. 322.

VR glasses are increasingly popular. Not only are computer fans enthusiastic about them, virtual tours through museums or exhibitions are possible, and prospective purchasers can 'see' the interior of their new car with various color and fabric choices.


1“ 120Hz WUXGA OLED microdisplay

© Fraunhofer FEP


LOMID headset prototype with 4 high-resolution OLED microdisplays

© Limbak

However, currently available VR glasses are usually heavy and oversized, while the feeling of “being right in the scene” often changes to a feeling of being on the deck of a boat during heavy swell. This 'motion sickness' is caused partly by low frame rates and flickering of the images, and partly by an inappropriate field of view.

The latest research results from the European funded project LOMID (Large cost-effective OLED microdisplays and their applications) will solve these challenges: Large-area OLED microdisplays, combined with advanced free-form optics provide an ergonomic and lightweight solution for the design of VR glasses, and higher frame-rates will reduce the motion sickness for users.

As part of the project, scientists from Fraunhofer FEP have developed new OLED microdisplays with a size of one inch and a resolution of 1920 × 1200 pixels (WUXGA, 2300ppi) and framerates of 120Hz. Ultra-compact optics, designed by project partner LIMBAK, seamlessly combine two display chips per eye, making four in total for the entire headset. With two WUXGA microdisplays per eye, the headset has a total resolution of 4800 x 1920 pixels, which is close to 5k. This design facilitates very high effective display resolutions and a wide field of view (>100°) for an excellent immersive VR sensation.

Moreover, the optics scientists of LIMBAK have been able to decrease the display-to-eye distance needed in the headset, lowering it to only 37 mm (compared to 60-75 mm in most conventional headsets). This ultra-compact optical design reduces the headset size to about a quarter of the volume and half the weight of a conventional headset while maintaining the same field of view.

Judith Baumgarten, scientist in the IC and System Design department at Fraunhofer FEP explains the design approach taken to reach high framerates and thus reducing motion sickness effects and flickering in VR applications: “To offer such high framerates of 120 Hz and thus high data rates, we have extended the parallel interface of the OLED microdisplays.

The display mode can be configured flexible from hold-type to impulse-type. The latter allows the elimination of motion artefacts and flicker with a special rolling emission mode. The chip also provides special look-up-tables for gamma correction - each channel (red, green, blue, and white) can be calibrated individually. We achieved a superior image quality with a very high contrast ratio of >100'000 : 1 at extraordinary low power consumption. We are very pleased about these positive results of our displays in combination with the ultra-compact optic design of LIMBAK, which enable really compact VR devices.”

The tiling of multiple OLED-on-silicon microdisplays inside the system has helped to reduce its form factor and weight, while increasing resolution to a level not easily achieved by conventional TFT-based AMOLED displays in VR headsets currently due to their typical pixel density limits. This approach also supports keeping yield and thus costs in a reasonable range.

Latter fact of keeping the costs of manufacturing large-area OLED microdisplays in a reasonable range was one of the main goals within LOMID project. Therefore also the partner X-FAB developed economical processes at the CMOS silicon foundry, paying special attention to the interface between the top metal electrode of the CMOS backplane and the subsequent OLED layers. Further on partner Microoled S.A.S. is responsible for the fabrication of the whole OLED microdisplays – the key component for these kinds of VR glasses using those CMOS backplane wafers.

Scientists from Fraunhofer FEP will present a LOMID headset prototype as well as research results during the awe Europe 2018 at booth no. 322, from October 18-19, 2018 at MOC Exhibition Center Munich, Germany.

About the LOMID project:
The LOMID research project, running from January 2015 to June 2018, involves eight partners from five countries. Four of the partners are research institutions or universi¬ties: The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has contributed to the microdisplay backplane IC design and prototyping; the University of Leipzig has synthesized materials for transparent oxide transistors; the University of Oxford has addressed vision aid applications; and the French Commissariat à l’énergie atomique et aux énergies alternative (CEA) Leti has developed techniques allowing the displays to be bent. The industrial partners are the X-FAB silicon foundry, respon¬sible for CMOS chip manufacture; MICROOLED, responsible for microdisplay manufacture and commercialisation; Limbak, responsible for the design of high-performance optics, and Amanuensis, supporting project management.

The LOMID project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 644101. See also: www.lomid.eu 


Fraunhofer FEP at awe europe 2018: exhibition booth no. 322

Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/9pk

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Information Technology:

nachricht German Research Foundation supports new theoretical physics project at Jacobs University Bremen
18.12.2018 | Jacobs University Bremen gGmbH

nachricht New Foldable Drone Flies through Narrow Holes in Rescue Missions
12.12.2018 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>