Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018

Scientists from Fraunhofer FEP developped a large-area high-resolution low-power OLED microdisplay with high framerates. The use of these microdisplays in VR glasses can help to avoid motion sickness. The new displays can be seen at awe europe in Munich/ Germany from October 18 to 19, 2018 at booth no. 322.

VR glasses are increasingly popular. Not only are computer fans enthusiastic about them, virtual tours through museums or exhibitions are possible, and prospective purchasers can 'see' the interior of their new car with various color and fabric choices.


1“ 120Hz WUXGA OLED microdisplay

© Fraunhofer FEP


LOMID headset prototype with 4 high-resolution OLED microdisplays

© Limbak

However, currently available VR glasses are usually heavy and oversized, while the feeling of “being right in the scene” often changes to a feeling of being on the deck of a boat during heavy swell. This 'motion sickness' is caused partly by low frame rates and flickering of the images, and partly by an inappropriate field of view.

The latest research results from the European funded project LOMID (Large cost-effective OLED microdisplays and their applications) will solve these challenges: Large-area OLED microdisplays, combined with advanced free-form optics provide an ergonomic and lightweight solution for the design of VR glasses, and higher frame-rates will reduce the motion sickness for users.

As part of the project, scientists from Fraunhofer FEP have developed new OLED microdisplays with a size of one inch and a resolution of 1920 × 1200 pixels (WUXGA, 2300ppi) and framerates of 120Hz. Ultra-compact optics, designed by project partner LIMBAK, seamlessly combine two display chips per eye, making four in total for the entire headset. With two WUXGA microdisplays per eye, the headset has a total resolution of 4800 x 1920 pixels, which is close to 5k. This design facilitates very high effective display resolutions and a wide field of view (>100°) for an excellent immersive VR sensation.

Moreover, the optics scientists of LIMBAK have been able to decrease the display-to-eye distance needed in the headset, lowering it to only 37 mm (compared to 60-75 mm in most conventional headsets). This ultra-compact optical design reduces the headset size to about a quarter of the volume and half the weight of a conventional headset while maintaining the same field of view.

Judith Baumgarten, scientist in the IC and System Design department at Fraunhofer FEP explains the design approach taken to reach high framerates and thus reducing motion sickness effects and flickering in VR applications: “To offer such high framerates of 120 Hz and thus high data rates, we have extended the parallel interface of the OLED microdisplays.

The display mode can be configured flexible from hold-type to impulse-type. The latter allows the elimination of motion artefacts and flicker with a special rolling emission mode. The chip also provides special look-up-tables for gamma correction - each channel (red, green, blue, and white) can be calibrated individually. We achieved a superior image quality with a very high contrast ratio of >100'000 : 1 at extraordinary low power consumption. We are very pleased about these positive results of our displays in combination with the ultra-compact optic design of LIMBAK, which enable really compact VR devices.”

The tiling of multiple OLED-on-silicon microdisplays inside the system has helped to reduce its form factor and weight, while increasing resolution to a level not easily achieved by conventional TFT-based AMOLED displays in VR headsets currently due to their typical pixel density limits. This approach also supports keeping yield and thus costs in a reasonable range.

Latter fact of keeping the costs of manufacturing large-area OLED microdisplays in a reasonable range was one of the main goals within LOMID project. Therefore also the partner X-FAB developed economical processes at the CMOS silicon foundry, paying special attention to the interface between the top metal electrode of the CMOS backplane and the subsequent OLED layers. Further on partner Microoled S.A.S. is responsible for the fabrication of the whole OLED microdisplays – the key component for these kinds of VR glasses using those CMOS backplane wafers.

Scientists from Fraunhofer FEP will present a LOMID headset prototype as well as research results during the awe Europe 2018 at booth no. 322, from October 18-19, 2018 at MOC Exhibition Center Munich, Germany.

About the LOMID project:
The LOMID research project, running from January 2015 to June 2018, involves eight partners from five countries. Four of the partners are research institutions or universi¬ties: The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has contributed to the microdisplay backplane IC design and prototyping; the University of Leipzig has synthesized materials for transparent oxide transistors; the University of Oxford has addressed vision aid applications; and the French Commissariat à l’énergie atomique et aux énergies alternative (CEA) Leti has developed techniques allowing the displays to be bent. The industrial partners are the X-FAB silicon foundry, respon¬sible for CMOS chip manufacture; MICROOLED, responsible for microdisplay manufacture and commercialisation; Limbak, responsible for the design of high-performance optics, and Amanuensis, supporting project management.

The LOMID project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 644101. See also: www.lomid.eu 


Fraunhofer FEP at awe europe 2018: exhibition booth no. 322

Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/9pk

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Information Technology:

nachricht Bursting the clouds for better communication
18.10.2018 | Université de Genève

nachricht Research on light-matter interaction could improve electronic and optoelectronic devices
11.10.2018 | Rensselaer Polytechnic Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>