Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced zooming on maps

17.02.2012
Road maps and city maps in the Internet could be even more attractive and user-friendly than today.

This is what computer scientists of the University of Würzburg are currently working on. One of their objectives is to develop maps the scale of which changes gradually rather than abruptly when zooming in and out. The first results of the scientists are published in a journal for visualization and computer graphics.


When a region of the road map is scaled up, distortions are created (red). Computer scientists of the University of Würzburg have developed a method (right) which significantly reduces the distortions when compared to the conventional fish-eye technique.
Picture: Jan-Henrik Haunert

Imagine you plan a day trip to the city of Berlin by train. To prepare for the trip, you might take a look at the maps provided by Google or Bing. Where is the train station located in Berlin, which direction should I take for the city center and how will I get to the cathedral? As you are zooming in more deeply on the city map, discovering ever more details – at some point in time, the train station will no longer be displayed on the screen. Where was it again?

"If you use the zoom function of maps in the Internet, you will not get several views of one and the same map; instead, various different maps are presented so that there are sudden changes in the representation," explains Professor Alexander Wolff of the Institute of Computer Science at the University of Würzburg. Therefore, users can easily get disoriented. Wolff and his colleague Jan-Henrik Haunert are going to remedy this problem – by means of maps with a variable scale. The project is funded by the German Research Foundation (DFG).

Enlarging individual regions on city maps

Variable scale – the Würzburg computer scientists have interactive maps in mind, on which individual regions can be viewed at a larger scale. Example: On an Internet map of Würzburg, a tourist would like to have a more detailed view of the streets leading to the Lion Bridge. He selects the respective point and gets an enlarged representation of the desired region. The residual part of the map shown on the screen continues to be displayed so that the total view of the city center is maintained.

Zoom method significantly improved

It has been possible for quite some time to implement this type of representation on the computer, using the so-called fish-eye technique. However, Jan-Henrik Haunert and the computer science student Leon Sering have recently developed a significantly improved method, presented in the December 2011 issue of the journal "IEEE Transactions on Visualization and Computer Graphics".

The fish-eye technique has the following disadvantage: When scaling-up a certain region, the rest of the map is highly distorted. With the method of the Würzburg computer scientists, this distortion can be significantly reduced – by about 75 percent. By means of an even better variant of this method, the processing time of the computer for calculating the zoom operation can be reduced by half: In this case, only the area directly around the enlarged region is distorted. Here, the deformation is still 65 percent smaller when compared to the fish-eye technique.

Processing time must be shortened

Let’s consider processing time: At the moment, it takes several seconds, for instance, to calculate the city map of Würzburg anew with a desired scaled-up region. This may be acceptable to someone who just needs a one-time printout of a map. But it is far too slow for users browsing a city map in the Internet and it is obviously not fast enough for real-time applications in navigation systems. Furthermore, the technique is not suited to be used in smart phones either. "It is still based on extensive convex programming, for which smart phones do not have enough processing power," says Professor Wolff.

Creating animated transitions between maps

So the method with the variable scale must be made faster. Over the coming three years, the computer scientists intend to achieve this target and some additional objectives in their DFG project. They also want to eliminate other effects that are likely to confuse users of interactive maps – such as the fact that the labels and the type of representation are subject to abrupt changes during zoom operations. For instance, users can get confused when the train station, which is initially represented as a point, suddenly changes into a large structure of railway tracks and buildings.

"As a solution to this problem, we are going to create animations that will allow smooth transitions between individual maps and different scales," says Jan Haunert. "The generalization of the data is the fundamental problem here." Generalization means in this case: For the animation, a detailed map together with its labels must be simplified step by step. When zooming, the user should finally get the impression that he is smoothly gliding along on one single map instead of switching from map to map and jumping from scale to scale. Then, it would be much more pleasant to plan a day trip to Berlin.

Project in the Internet Research Center

The DFG project of Alexander Wolff and Jan-Henrik Haunert is located at the Internet Research Center of the University of Würzburg. At this research center, computer scientists, psychologist and legal scholars focus on topics such as innovative web applications and a modern architecture of the World Wide Web.

“Drawing Road Networks with Focus Regions”, Jan-Henrik Haunert and Leon Sering, IEEE Transactions on Visualization and Computer Graphics, Vol. 17, Issue 12, 2555-2562, December 2011, DOI 10.1109/TVCG.2011.191

Read the publication: http://www1.informatik.uni-wuerzburg.de/pub/haunert/pdf/HaunertSering2011.pdf

Links

Further information on the research at the Department of Computer Science I at the University of Würzburg: http://www1.informatik.uni-wuerzburg.de/en/research/

To the Internet Research Center of the University of Würzburg: http://ircwiki.informatik.uni-wuerzburg.de/

Contact

Prof. Dr. Alexander Wolff, Department of Computer Science, University of Würzburg, T + 49 931 31-85055

Dr. Jan-Henrik Haunert, Department of Computer Science, University of Würzburg, T + 49 931 31-88668

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>