Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromagnetic emissions from smartphones analyzed for security vulnerability

20.12.2017

New system developed by UC3M and CSIC

This platform, whose objective is to improve smartphone security and that of other electronic devices, was recently presented in Canada in an international conference on security and privacy on the Internet of Things (Workshop on Security and Privacy on Internet of Things).


This study of the UC3M and the CSIC analyzes the vulnerabilities of smartphones.

Credit: UC3M

This research focuses on "lateral movement attacks", which happen when "someone tries to take advantage of a circumstance (in this case, any electric current producing a magnetic field) for illicit purposes (in this case, the attacker tries to extract the private password from the encryption, to which he theoretically should not have access)", explained one of the researchers, José María de Fuentes, UC3M Computer Security Lab (COSEC).

Traditionally, they tried to attack the encrypted algorithm, that is, the process to protect data, which normally has a complicated mathematical base. Later, this type of lateral movement attacks have been developed to seek other ways of breaching security without having to "break" the math upon which it is based. "When the devices are on, they use energy and generate electromagnetic fields. We try to capture their traces to obtain the encryption key and at the same time, decipher the data," explained another of the researchers, Lorena González, who is also from the UC3M COSEC.

Digital vulnerability

"We want to make it known that these type of devices have vulnerabilities, because if an adversary attacks them, that is, if someone calculates the password that you are using on your cell phone, it will make you vulnerable, and your data will no longer be private," affirmed one of the other researchers, Luis Hernández Encinas. Hernández Encinas is from CSIC's Instituto de Tecnologías Físicas y de la Información - ITEFI (Institute for Physical and Information Technologies).

The basic aim of this research is to detect and make known the vulnerabilities of electronic devices and that of their chips, so that software and hardware developers can implement appropriate countermeasures to protect user security. "Our work then will be to verify is this has been carried out correctly and try to attack again to check it there is any other type of vulnerabilities," added Hernández Encinas.

The most relevant aspect of the project, according to the researchers, is that an architecture and work environment is being develop in which this type of lateral movement attacks can continue to be explored. In fact, it is possible to extract encrypted information from other data, such as variations in temperature of the device, the power consumption, and the time it takes a chip to process a calculation.

This research has been carried out in the framework of CIBERDINE (Cybersecurity: Data, Information, Risks), a R+D+i program funded by the Consejería de Educación, Cultura y Deporte (Board of Education, Culture and Sport) of the Madrid Autonomous Region and by Structural Funds from the European Union.. Its main objective is to develop technological tools aimed at making cyberspace a safe, secure and trustworthy environment for public administrations, citizens and companies. For that purpose, this research pursues three broad areas: massive analysis of data networks, cooperative cybersecurity and support systems for decision making in this area.

###

Bibliographic references: A Framework for Acquiring and Analyzing Traces from Cryptographic Devices. A. Blanco Blanco, J.M. de Fuentes, L. González Manzano, L. Hernández Encinas, A. Martín Muñoz, J.L. Rodrigo Oliva, I. Sánchez García. Workshop on Security and Privacy on Internet of Things (SePrIoT) 2017. 13th EAI International Conference on Security and Privacy in Communication Networks. 25th October 2017, Niagara Falls, Canada. http://www.seg.inf.uc3m.es/~lgmanzan/docs/SCAP.pdf

Further information: CIBERDINE program: http://www.seg.inf.uc3m.es/ciberdine

Video: Researchers interview https://youtu.be/ShZfVmFTOp8

Media Contact

Javier Alonso Flores
fjalonso@bib.uc3m.es

 @uc3m

http://www.uc3m.es 

Javier Alonso Flores | EurekAlert!

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>