Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Processing of Big Data on a Daily Routine Basis

10.06.2014

Computer systems today can be found in nearly all areas of life, from smartphones to smart cars to self-organized production facilities.

These computer systems supply rapidly growing data volumes. Computer science now faces the challenge of processing these huge amounts of data (big data) in a reasonable and secure manner. The new priority program “Algorithms for Big Data” (SPP 1736) funded by the German Research Foundation (DFG) is aimed at developing more efficient computing operations. The Institute of Theoretical Informatics of the Karlsruhe Institute of Technology (KIT) is involved in four of 15 partial projects of this SPP.   


By means of an algorithm, increasing networking of students on Facebook can be displayed according to their age. (Graphics: Michael Hamann, KIT)

As a result of new mobile technologies, such as smartphones or tablet PCs, use of computer systems increased rapidly in the past years. These systems produce increasing amounts of data of variable structure. However, adequate programs for processing these data are lacking. “The algorithms known so far are not designed for processing the huge data volumes associated with many problems. The new priority program is aimed at developing theoretically sound methods that can be applied in practice,” explains Assistant Professor Henning Meyerhenke, KIT.

So far, research relating to big data has focused on scientific applications, such as computer-supported simulations for weather forecasts. Now, KIT researchers are working on solutions to enhance the efficiency of computing processes, which can be applied on a daily routine basis. Examples are search queries on the internet or the structural analysis of social networks.

... more about:
»Algorithms »Big Data »SPP »encoding »networks »processing

Four KIT research groups participate in the priority program.

The priority program “Algorithms for Big Data” that is funded by the DFG for a period of six years covers several projects all over Germany. Among these projects are four of the KIT Institute of Theoretical Informatics.

The project “Rapid Inexact Combinatorial and Algebraic Solvers for Large Networks” of Assistant Professor Henning Meyerhenke addresses complex problems encountered in large networks. The tasks to be solved are motivated by biological applications. For example, individuals of a species can be networked according to the similarity of their genome and then classified. The new processes help classify the data arising with a reduced calculation expenditure. In this way, it is easier for biologists to derive new findings.

In the project “Scalable Cryptography” of Assistant Professor Dennis Hofheinz (KIT) and Professor Eike Klitz (Ruhr-Universität Bochum), work focuses on the security of big data. Cryptographic methods, such as encoding or digital signatures, guarantee security also in case of big data volumes. However, existing methods are difficult to adapt to the new tasks. The security provided by the RSA-OAEP encoding method used in conventional internet browsers, for instance, is insufficient in case of big data. “We are looking for a solution that stably guarantees security even in case of an increasing number of accesses and users,” says Assistant Professor Dennis Hofheinz, who is member of the Cryptography and Security Working Group at the KIT.

The increasingly growing social networks, such as Facebook or Twitter, produce large data accumulations. At the same time, these data are of high economic and political value. The project “Clustering in Social Online Networks” of Professor Dorothea Wagner (KIT) and Professor Ulrik Brandes (Universität Konstanz) starts at this point. With the help of new algorithms, the development of online communities in social networks shall be reproduced.

To search a big volume of data e.g. on the internet, a functioning tool, such as a good search machine, is indispensable. “The search machines used today can be further improved by algorithms of increased efficiency,” Professor Peter Sanders says, who also conducts research at the Institute of Theoretical Informatics. Within the framework of his project “Text Indexing for Big Data”, Sanders, together with Professor Johannes Fischer of the Technical University of Dortmund, is looking for optimization options. In particular, they plan to use many processors at the same time, while searching of data in strongly compressed form shall remain possible.

Big Data at the KIT

The topic of Big Data is of high relevance in various application scenarios. Not only science, but also users of new technologies are increasingly facing so far unknown problems. To manage these problems, the KIT works on various Big Data projects apart from SPP 1736. For instance, KIT is partner of the Helmholtz project “Large Scale Data Management and Analysis” (LSDMA). This project pools various competences in handling big data, as it covers effective acquisition, storage, distribution, analysis, visualization, and archiving of data.

In addition, the KIT has been operating the Smart Data Innovation Lab (SDIL), a platform for Big Data research, since 2014. The SDIL reaches highest performance and can be used in practice by industry and science. 

http://www.kit.edu/kit/english/pi_2014_15153.php

Monika Landgraf | AlphaGalileo

Further reports about: Algorithms Big Data SPP encoding networks processing

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>