Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Coupled duo

12.12.2011
Systematic study of the switching behavior in differential dual spin valves reveals the role of interlayer couplings

Spin valves are essential building blocks in the magnetic sensors of read heads in hard disk drives. They consist of two magnetic layers separated by a non-magnetic layer and act as valves for electrons depending on the relative alignment of the magnetization (spin) in the magnetic layers.

With the continuous push to boost the storage density of disk drives, it has become increasingly important to shield each individual sensor from the magnetic flux of adjacent bits. However, the current approach of placing the read sensor between two magnetic shields limits the resolution with which information can be packed.

To circumvent this issue, a read sensor using a 'differential dual spin valve' (DDSV) was previously proposed by Guchang Han and co-workers at the A*STAR Data Storage Institute. Based on two spin valves separated by a gap layer, it is not influenced by uniform magnetic fields (unlike single spin valve read sensors) but on field gradients. As Han explains, the packing resolution is thereby no longer limited by the magnetic shield-to-shield spacing, but by the thickness of the two active layers in the spin valves (called free layers) and the gap layer separating them.

In a significant step in understanding how the reading performance of DDSVs is affected by further downscaling of the device dimensions, Han and his colleagues have now systematically studied the magnetic interactions between the free layers as a function of their thicknesses as well as the gap layer material and thickness1.

“There are mainly two types of interlayer interactions between the two free layers,” says Han. One is a magnetostatic interaction, which propagates along the edges of the device. The other is mediated through the gap layer by either free electrons (the so-called RKKY interaction) or magnetic poles formed at the rough interfaces between the gap and free layers (Néel coupling).

While the Néel coupling is always ferromagnetic, thus favoring parallel alignment of the magnetizations in the free layers, the RKKY interaction can be either ferro- or antiferromagnetic , depending on the gap layer thickness and material. “From a DDSV working principle, it is desirable to have the two free layers couple antiferromagnetically,” notes Han.

For patterned DDSV samples, the researchers showed that the magnetostatic edge coupling dominates the switching behavior. In contrast, for thin-film samples, it is governed by a competition between the RKKY and Néel coupling, which can be controlled by the appropriate choice of gap material and thickness on the nanoscale.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Reference

Han, G. C., Wang, C. C., Qiu, J. J., Luo, P. & Ko, V. Interlayer couplings in a differential dual spin valve. Applied Physics Letters 98, 192502 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>