Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: A fast and loose approach improves memory

21.12.2012
An unconventional design for a nanoscale memory device uses a freely moving mechanical shuttle to improve performance

A loose and rattling part in your cell phone is generally a cause for concern. Like most other electronic devices, your phone works by moving electrons through fixed circuit pathways. If electrons are not sufficiently contained within these pathways, the efficiency and speed of a device decrease.

However, as the miniature components inside electronic devices shrink with each generation, electrons become harder to contain. Now, a research team led by Vincent Pott at the A*STAR Institute of Microelectronics, Singapore, has designed a memory device using a loose and moving part that actually enhances performance1.

The loose part is a tiny metal disk, or shuttle, about 300 nanometers thick and 2 micrometers long, and lies inside a roughly cylindrical metal cage. Because the shuttle is so small, gravity has little effect on it. Instead, the forces of adhesion between the shuttle and its metal cage determine its position. When stuck to the top of its cage, the shuttle completes an electrical circuit between two electrodes, causing current to flow. When it is at the bottom of the cage, the circuit is broken and no current flows. The shuttle can be moved from top to bottom by applying a voltage to a third electrode, known as a gate, underneath the cage.

Pott and co-workers suggested using this binary positioning to encode digital information. They predicted that the forces of adhesion would keep the shuttle in place even when the power is off, allowing the memory device to retain information for long periods of time. In fact, the researchers found that high temperature — one of the classic causes of electronic memory loss — should actually increase the duration of data retention by softening the metal that makes up the shuttle memory's disk and cage, thereby strengthening adhesion. The ability to operate in hot environments is a key requirement for military and aerospace applications.

The untethered shuttle also takes up less area than other designs and is not expected to suffer from mechanical fatigue because it avoids the use of components that need to bend or flex — such as the cantilevers used in competing mechanical memory approaches. In a simulation, Pott and co-workers found that the shuttle memory should be able to switch at speeds in excess of 1 megahertz.

The next steps, the researchers say, include designing arrays of the devices and analyzing fabrication parameters in detail. If all goes well, their novel device could compete head-to-head with the industry-standard FLASH memory.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Pott, V., Li, C. G., Vaddi, R., Tsai, J. M.-L. & Kim, T. T. The shuttle nanoelectromechanical nonvolatile memory. IEEE Transactions on Electron Devices 59, 1137–1143 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com
http://www.researchsea.com/html/article.php/eml/1/aid/7541/cid/1

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>