Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth-led team develops smartwatch with all the moves

08.05.2017

A watch that rotates, hinges, translates, orbits and rises to the occasion

In an effort to make digital smartwatches more convenient for their users, researchers at Dartmouth College and the University of Waterloo have produced a prototype watch face that moves in five different directions.


The Cito prototype rotates, hinges, translates, rises and orbits to add convenience for smartwatch users.

Credit: Jun Gong

With the ability to rotate, hinge, translate, rise and orbit, the model dramatically improves functionality and addresses limitations of today's fixed-face watches. The concept, named Cito, will be presented on May 10 at the ACM CHI Conference on Human Factors in Computing Systems in Denver, Colorado.

"Users want smartwatches that fit their lifestyles and needs," said Xing-Dong Yang, assistant professor of computer science at Dartmouth. "The Cito prototype is an exciting innovation that could give consumers even more great reasons to wear smartwatches."

Most smartwatch research primarily addresses how users can more easily input information. Cito, designed and engineered by Jun Gong, Lan Li, Daniel Vogel, and Yang, aims to remove awkward moments associated with using smartwatches by improving how the device presents data to the wearer.

Examples of watch movement - or actuation -include automatically orbiting around the wristband to allow viewing when the wrist is facing away from the user; rising to alert the wearer of a notification if the user is playing a game; hinging to allow a companion to view the watch face; and translating to reveal the watch face from underneath a shirt sleeve.

"Consumers will question the need for smartwatches if the devices are just not convenient enough. Cito proves the true potential of smartwatches and shows that they can be functional and fun," said Yang.

According to a research paper submitted at CHI 2017, the five watch face movements can be performed independently or combined. Beyond making the watches more convenient for users, the technology can provide important benefits to wearers with physical disabilities or other impairments.

The design concept is the latest innovation from the same Dartmouth lab that has studied other smartwatch innovations including Wrist-Whirl, a smartwatch that uses the wrist as a joystick to perform gestures and Doppio, a smartwatch with dual touchscreens.

"We recognize that our work investigates a radical idea, but our hope is that we also show how a methodical and principled approach can explore any such radical visions," the research team said in its paper.

In developing the prototype, researchers conducted two separate studies to confirm the usefulness, social acceptability and perceived comfort of different watch movements and usage contexts.

With continued research, the team is planning to integrate innovations like an ultra-sonic motor to reduce bulk and increase battery life to make the actuated watch technology more practical.

###

Xing-Dong Yang may be contacted at: Xing-Dong.Yang@dartmouth.edu

Watch a video featuring the Cito prototype at this link.

Hi-res photos are available upon request.

Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

About Dartmouth

Founded in 1769, Dartmouth is a member of the Ivy League and offers the world's premier liberal arts education, combining its deep commitment to outstanding undergraduate and graduate teaching with distinguished research and scholarship in the arts and sciences and its three leading professional schools: the Geisel School of Medicine, Thayer School of Engineering and Tuck School of Business.

David Hirsch | EurekAlert!

Further reports about: battery life computer science gestures innovations smartwatch

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>